We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens

    Modawy EM Elkhalifa

    Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA

    Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan

    ,
    Muhammad Ashraf

    Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan

    ,
    Alshebli Ahmed

    Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA

    Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan

    ,
    Assad Usman

    Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan

    ,
    Alashary AE Hamdoon

    Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA

    Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan

    ,
    Mohammed A Elawad

    Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA

    Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan

    ,
    Meshari G Almalki

    Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA

    ,
    Osama F Mosa

    Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA

    ,
    Laziz N Niyazov

    Medical Chemistry Department, Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan

    &
    Muhammad Ayaz

    *Author for correspondence: Tel.: +92 346 800 4990;

    E-mail Address: Ayazuop@gmail.com

    Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan

    Published Online:https://doi.org/10.2217/fmb-2023-0175

    The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.

    Plain language summary

    Bacteria can become more difficult to kill by forming a protective layer called a biofilm. This is a problem because infections caused by these bacteria can be difficult to treat. Polyphenols are a natural compound found in plants. They have shown promise in fighting resistant bacteria by stopping bacteria from forming a biofilm. However, polyphenols have some limitations. These limitations can be overcome by using nanomaterials, which are types of tiny particles. When polyphenols are combined with nanomaterials, they become much better at fighting bacteria. This is a promising solution to treating resistant infections caused by biofilm-forming bacteria.

    Tweetable abstract

    Polyphenols combat bacterial biofilm, a major resistance factor, via multiple mechanisms. Nanoformulations could boost their antibacterial power.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ovais M, Zia N, Khalil AT, Ayaz M, Khalil A, Ahmad I. Nanoantibiotics: recent developments and future prospects. Front. Clin. Drug Res. Anti. Infect. 5, 158–182 (2019). •• Authors presentthe concept of nano-antibiotics. Compared with conventional antibiotics, they are a safe and effective alternative approach with better pharmacokinetics and dynamics profiles.
    • 2. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019).
    • 3. van de Sande-Bruinsma N, Wong DLF. WHO European strategic action plan on antibiotic resistance: how to preserve antibiotics. J. Pediatr. Infect. Dis. 9(03), 127–134 (2014).
    • 4. Sydnor ER, Perl TM. Hospital epidemiology and infection control in acute-care settings. Clin. Microbiol. Rev. 24(1), 141–173 (2011).
    • 5. Frieden T. Antibiotic resistance threats in the United States. Centers Dis. Control Prev. 114, 11–89 (2013).
    • 6. Matsunaga N, Hayakawa K. Estimating the impact of antimicrobial resistance. Lancet Glob. Health 6(9), e934–e935 (2018). •• Highlights global estimates, the WHO's efforts and a global action plan to combat antimicrobial resistance.
    • 7. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol. Spectr. 4(2), 15 (2016).
    • 8. Costerton JW, Stewart PS. Biofilms and device-related infections. In: Persistent Bacterial Infections. Nataro JPBlaser MJCunningham-Rundles S (Eds). ASM Press, WA, USA, 423–439 (2000).
    • 9. Asma ST, Imre K, Morar A et al. Natural strategies as potential weapons against bacterial biofilms. Life 12(10), 1618 (2022).
    • 10. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg E. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805), 762–764 (2000). •• An important work that analyzed the role of biofilm in resistance to antibiotic therapy in Pseudomonas aeruginosa among patients with cystic fibrosis lungs.
    • 11. Hoiby N, Fomsgaard A, Jensen ET et al. The Immune Response to Bacterial Biofilms. Cambridge University Press, Cambridge, UK (1995).
    • 12. Ceri H, Olson ME, Stremick C, Read R, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37(6), 1771–1776 (1999). • Authors devised a new technology for rapid susceptibility analysis of microbial strains to antibiotics and biofilms. This may help researchers in the rational selection of antibiotics against biofilm-forming bacteria and for screening of new antimicrobial compounds.
    • 13. Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4(4), e1000052 (2008).
    • 14. Yong YY, Dykes GA, Choo WS. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit. Rev. Microbiol. 45(2), 201–222 (2019).
    • 15. da Silva Trentin D, Giordani RB, Zimmer KR et al. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol. 137(1), 327–335 (2011).
    • 16. Jakobsen TH, van Gennip M, Phipps RK et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother. 56(5), 2314–2325 (2012).
    • 17. Jakobsen TH, Warming AN, Vejborg RM et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci. Rep. 7(1), 1–12 (2017).
    • 18. Xu Z, Zhang H, Yu H et al. Allicin inhibits Pseudomonas aeruginosa virulence by suppressing the rhl and pqs quorum-sensing systems. Can. J. Microbiol. 65(8), 563–574 (2019).
    • 19. Tapia-Rodriguez MR, Bernal-Mercado AT, Gutierrez-Pacheco MM et al. Virulence of Pseudomonas aeruginosa exposed to carvacrol: alterations of the quorum sensing at enzymatic and gene levels. J. Cell Commun. Signal. 13(4), 531–537 (2019).
    • 20. Yan X, Gu S, Shi Y, Cui X, Wen S, Ge J. The effect of emodin on Staphylococcus aureus strains in planktonic form and biofilm formation in vitro. Arch. Microbiol. 199(9), 1267–1275 (2017).
    • 21. Janeczko M, Masłyk M, Kubiński K, Golczyk H. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast 34(6), 253–265 (2017).
    • 22. Xiang H, Cao F, Ming D et al. Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development. Appl. Microbiol. Biotechnol. 101(17), 6671–6681 (2017).
    • 23. Zhou J-W, Luo H-Z, Jiang H, Jian T-K, Chen Z-Q, Jia A-Q. Hordenine: a novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. J. Agric. Food Chem. 66(7), 1620–1628 (2018).
    • 24. Shehabeldine AM, Ashour RM, Okba MM, Saber FR. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. J. Ethnopharmacol. 254, 112669 (2020).
    • 25. Das MC, Sandhu P, Gupta P et al. Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: a combinatorial study with azithromycin and gentamicin. Sci. Rep. 6(1), 1–13 (2016).
    • 26. Srinivasan R, Devi KR, Kannappan A, Pandian SK, Ravi AV. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro. J. Ethnopharmacol. 193, 592–603 (2016).
    • 27. Vikram A, Jesudhasan PR, Pillai SD, Patil BS. Isolimonic acid interferes with Escherichia coli O157: h7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol. 12(1), 1–13 (2012).
    • 28. Majik MS, Naik D, Bhat C, Tilve S, Tilvi S, D'Souza L. Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 23(8), 2353–2356 (2013).
    • 29. Kumar L, Chhibber S, Kumar R, Kumar M, Harjai K. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia 102, 84–95 (2015).
    • 30. Luo J, Dong B, Wang K et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLOS ONE 12(4), e0176883 (2017).
    • 31. Raorane CJ, Lee J-H, Kim Y-G, Rajasekharan SK, García-Contreras R, Lee J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. 10, 990 (2019).
    • 32. Arita-Morioka K-i, Yamanaka K, Mizunoe Y, Tanaka Y, Ogura T, Sugimoto S. Inhibitory effects of myricetin derivatives on curli-dependent biofilm formation in Escherichia coli. Sci. Rep. 8(1), 8452 (2018).
    • 33. Tahrioui A, Ortiz S, Azuama OC et al. Membrane-interactive compounds from Pistacia lentiscus L. thwart Pseudomonas aeruginosa virulence. Front. Microbiol. 11, 1068 (2020).
    • 34. Qian W, Zhang J, Wang W et al. Efficacy of chelerythrine against mono-and dual-species biofilms of Candida albicans and Staphylococcus aureus and its properties of inducing hypha-to-yeast transition of C. albicans. J. Fungi 6(2), 45 (2020).
    • 35. Lyles JT, Kim A, Nelson K et al. The chemical and antibacterial evaluation of St. John's Wort oil macerates used in Kosovar traditional medicine. Front. Microbiol. 8, 1639 (2017).
    • 36. Kipanga PN, Liu M, Panda SK et al. Biofilm inhibiting properties of compounds from the leaves of Warburgia ugandensis Sprague subsp ugandensis against Candida and staphylococcal biofilms. J. Ethnopharmacol. 248, 112352 (2020).
    • 37. Satputea SK, Banpurkar AG, Banat IM, Sangshetti JN, Patil RH, Gade WN. Multiple roles of biosurfactants in biofilms. Curr. Pharm. Des. 22(11), 1429–1448 (2016).
    • 38. Ohadi M, Forootanfar H, Dehghannoudeh G et al. Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb. Pathog. 138, 103806 (2020). • A biogenic biosurfactant isolated from Acinetobacter junii B6 strain, reported as an antimicrobial and antibiofilm agent.
    • 39. Abdel-Aziz MM, Al-Omar MS, Mohammed HA, Emam TM. In vitro and Ex vivo antibiofilm activity of a lipopeptide biosurfactant produced by the entomopathogenic Beauveria bassiana strain against Microsporum canis. Microorganisms 8(2), 232 (2020).
    • 40. Janek T, Drzymała K, Dobrowolski A. In vitro efficacy of the lipopeptide biosurfactant surfactin-C15 and its complexes with divalent counterions to inhibit Candida albicans biofilm and hyphal formation. Biofouling 36(2), 210–221 (2020).
    • 41. Abdelli F, Jardak M, Elloumi J et al. Antibacterial, anti-adherent and cytotoxic activities of surfactin (s) from a lipolytic strain Bacillus safensis F4. Biodegradation 30(4), 287–300 (2019).
    • 42. Balan SS, Kumar CG, Jayalakshmi S. Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK-47: purification, characterization and its biological evaluation. Process Biochem. 51(12), 2198–2207 (2016).
    • 43. Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L. Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek 109(10), 1375–1388 (2016).
    • 44. Karlapudi AP, Venkateswarulu T, Srirama K, Kota RK, Mikkili I, Kodali VP. Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter M6 strain. J. King Saud. Univ. Sci. 32(1), 223–227 (2020).
    • 45. E K R, Mathew J. Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J. Biotechnol. 313, 1–10 (2020).
    • 46. Abdollahi S, Tofighi Z, Babaee T et al. Evaluation of anti-oxidant and anti-biofilm activities of biogenic surfactants derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa. Iran. J. Pharm. Sci. 19(2), 115 (2020).
    • 47. Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnol. 36, 26–36 (2017).
    • 48. Sacco LP, Castellane TCL, Polachini TC, de Macedo Lemos EG, Alves LMC. Exopolysaccharides produced by Pandoraea shows emulsifying and anti-biofilm activities. J. Polym. Res. 26(4), 1–11 (2019).
    • 49. Mahnashi MH, Ayaz M, Alqahtani YS et al. Quantitative-HPLC-DAD polyphenols analysis, anxiolytic and cognition enhancing potentials of Sorbaria tomentosa Lindl. Rehder. J. Ethnopharmacol. 317, 116786 (2023).
    • 50. Mahnashi MH, Ashraf M, Alhasaniah AH et al. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer's disease: in vitro, in vivo and in silico approaches. Biomed. Pharmacother. 165, 115144 (2023).
    • 51. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 8(9), 950–988 (2007).
    • 52. Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24(8), 1415–1422 (2013).
    • 53. Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules 18(2), 2328–2375 (2013).
    • 54. D'Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 43(4), 348 (2007).
    • 55. de Lacerda de Oliveira L, de Carvalho MV, Melo L. Health promoting and sensory properties of phenolic compounds in food. Rev. Ceres. 61, 764–779 (2014).
    • 56. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12), 1231–1246 (2010).
    • 57. Kabra A, Garg R, Brimson J et al. Mechanistic insights into the role of plant polyphenols and their nano-formulations in the management of depression. Front. Pharmacol. 13, 4731 (2022).
    • 58. Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B. Phenolics in human health. Int. J. Chem. Eng. Appl. 5(5), 393 (2014).
    • 59. Crozier A, Clifford MN, Ashihara H. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet. Blackwell Publishing Ltd, Oxford, UK (2008).
    • 60. Lattanzio V. Chapter: 50 phenolic compounds: introduction. Nat. Prod. 1543–1580 (2013).
    • 61. Rao V. Phytochemicals as Nutraceuticals–Global Approaches to Their Role in Nutrition and Health. InTech, London, UK (2012).
    • 62. Chang J, Reiner J, Xie J. Progress on the chemistry of dibenzocyclooctadiene lignans. Chem. Rev. 105(12), 4581–4609 (2005).
    • 63. Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules 14(6), 2202–2211 (2009).
    • 64. Daglia M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23(2), 174–181 (2012).
    • 65. Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control 46, 412–429 (2014).
    • 66. Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant natural products targeting bacterial virulence factors. Chem. Rev. 116(16), 9162–9236 (2016).
    • 67. Gopu V, Kothandapani S, Shetty PH. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb. Pathog. 79, 61–69 (2015).
    • 68. Gutiérrez-Barranquero JA, Reen FJ, McCarthy RR, O'Gara F. Deciphering the role of coumarin as a novel quorum sensing inhibitor suppressing virulence phenotypes in bacterial pathogens. Appl. Microbiol. Biotechnol. 99(7), 3303–3316 (2015). • Reports the role of coumarin as an inhibitor of quorum sensing with subsequent inhibition of biofilm formation.
    • 69. Zeng Z, Qian L, Cao L et al. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 79(1), 119–126 (2008).
    • 70. Lee J-H, Kim Y-G, Cho HS, Ryu SY, Cho MH, Lee J. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157: h7. Phytomedicine 21(8–9), 1037–1042 (2014).
    • 71. Ding X, Yin B, Qian L et al. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J. Med. Microbiol. 60(12), 1827–1834 (2011).
    • 72. Manner S, Skogman M, Goeres D, Vuorela P, Fallarero A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int. J. Mol. Sci. 14(10), 19434–19451 (2013).
    • 73. Wallock-Richards DJ, Marles-Wright J, Clarke DJ et al. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem. Comm. 51(52), 10483–10485 (2015).
    • 74. Rozalski M, Micota B, Sadowska B et al. Antiadherent and antibiofilm activity of Humulus lupulus L. derived products: new pharmacological properties. Biomed Res. Int. 2013, 101089 (2013).
    • 75. Vikram A, Jayaprakasha GK, Jesudhasan P, Pillai S, Patil B. Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol. 109(2), 515–527 (2010).
    • 76. Cho HS, Lee J-H, Cho MH, Lee J. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling 31(1), 1–11 (2015).
    • 77. Dürig A, Kouskoumvekaki I, Vejborg RM, Klemm P. Chemoinformatics-assisted development of new anti-biofilm compounds. Appl. Microbiol. Biotechnol. 87(1), 309–317 (2010).
    • 78. Vikram A, Jayaprakasha G, Uckoo RM, Patil BS. Inhibition of Escherichia coli O157: h7 motility and biofilm by β-sitosterol glucoside. Biochim. Biophys. Acta Gen. Subj. 1830(11), 5219–5228 (2013).
    • 79. Prabu G, Gnanamani A, Sadulla S. Guaijaverin–a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J. Appl. Microbiol. 101(2), 487–495 (2006).
    • 80. Hasan S, Singh K, Danisuddin M, Verma PK, Khan AU. Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control. PLOS ONE 9(3), e91736 (2014).
    • 81. Zhang J, Rui X, Wang L, Guan Y, Sun X, Dong M. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control 42, 125–131 (2014).
    • 82. Lee J-H, Regmi SC, Kim J-A et al. Apple flavonoid phloretin inhibits Escherichia coli O157: h7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 79(12), 4819–4827 (2011).
    • 83. Sivaranjani M, Gowrishankar S, Kamaladevi A, Pandian SK, Balamurugan K, Ravi AV. Morin inhibits biofilm production and reduces the virulence of Listeria monocytogenes–An in vitro and in vivo approach. Int. J. Food Microbiol. 237, 73–82 (2016).
    • 84. Lee P, Tan KS. Effects of Epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch. Oral Biol. 60(3), 393–399 (2015).
    • 85. Vandeputte OM, Kiendrebeogo M, Rajaonson S et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 76(1), 243–253 (2010).
    • 86. Kang M-S, Oh J-S, Kang I-C, Hong S-J, Choi C-H. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J. Microbiol. 46(6), 744–750 (2008).
    • 87. Shao D, Li J, Li J et al. Inhibition of gallic acid on the growth and biofilm formation of Escherichia coli and Streptococcus mutans. J. Food Sci. 80(6), M1299–M1305 (2015).
    • 88. Lin M-H, Chang F-R, Hua M-Y, Wu Y-C, Liu S-T. Inhibitory effects of 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob. Agents Chemother. 55(3), 1021–1027 (2011).
    • 89. Hancock V, Dahl M, Vejborg RM, Klemm P. Dietary plant components ellagic acid and tannic acid inhibit Escherichia coli biofilm formation. J. Med. Microbiol. 59(4), 496 (2010).
    • 90. Fialová S, Slobodníková L, Veizerová L, GranČai D. Lycopus europaeus: phenolic fingerprint, antioxidant activity and antimicrobial effect on clinical Staphylococcus aureus strains. Nat. Prod. Res. 29(24), 2271–2274 (2015).
    • 91. Li J, Koh J-J, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front. Neurosci. 11, 73 (2017).
    • 92. Bierbaum G, Sahl H-G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol. 10(1), 2–18 (2009).
    • 93. Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B. Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob. Agents Chemother. 52(2), 612–618 (2008).
    • 94. Hsu S-TD, Breukink E, Tischenko E et al. The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 11(10), 963–967 (2004).
    • 95. De Rienzo MAD, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. New Biotechnol. 32(6), 720–726 (2015).
    • 96. Shah IM, Laaberki M-H, Popham DL, Dworkin J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135(3), 486–496 (2008).
    • 97. Shen Y, Köller T, Kreikemeyer B, Nelson DC. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J. Antimicrob. Chemother. 68(8), 1818–1824 (2013).
    • 98. Fischetti VA. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int. J. Med. Microbiol. 300(6), 357–362 (2010).
    • 99. Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J. Appl. Bacteriol. 75(6), 499–511 (1993).
    • 100. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochem. 40(10), 3016–3026 (2001).
    • 101. Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res. 44(5), 2439–2450 (2016).
    • 102. Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol. 19(9), 449–455 (2011).
    • 103. Saggu SK, Jha G, Mishra PC. Enzymatic degradation of biofilm by metalloprotease from microbacterium sp. SKS10. Front. Bioeng. Biotechnol. 7, 192 (2019).
    • 104. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem. Rev. 111(1), 117–151 (2011).
    • 105. Beenken KE, Mrak LN, Griffin LM et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLOS ONE 5(5), e10790 (2010).
    • 106. Romero D, Kolter R. Will biofilm disassembly agents make it to market? Trends Microbiol. 19(7), 304–306 (2011).
    • 107. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ. Microbiol. 15(2), 334–346 (2013).
    • 108. Jiang P, Li J, Han F et al. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLOS ONE 6(4), e18514 (2011).
    • 109. Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLOS ONE 7(10), e46718 (2012).
    • 110. Wu S, Liu G, Jin W, Xiu P, Sun C. Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa. Front. Microbiol. 7, 102 (2016).
    • 111. Stewart PS. Prospects for anti-biofilm pharmaceuticals. Pharmaceuticals 8(3), 504–511 (2015).
    • 112. Kaplan JB. Therapeutic potential of biofilm-dispersing enzymes. Int. J. Artif. Organs 32(9), 545–554 (2009).
    • 113. Dieltjens L, Appermans K, Lissens M et al. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat. Commun. 11(1), 1–11 (2020).
    • 114. Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406(6797), 775–781 (2000).
    • 115. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44(7), 1818–1824 (2000).
    • 116. Williams I, Venables WA, Lloyd D, Paul F, Critchley I. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 143(7), 2407–2413 (1997).
    • 117. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 40(11), 2517–2522 (1996).
    • 118. Stewart PS. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol. Bioeng. 59(3), 261–272 (1998).
    • 119. Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43(5), 340–345 (1997).
    • 120. De Beer D, Stoodley P, Roe F, Lewandowski Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43(11), 1131–1138 (1994).
    • 121. Zhang TC, Bishop PL. Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ. Res. 68(7), 1107–1115 (1996).
    • 122. Tack KJ, Sabath L. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31(3), 204–210 (1985).
    • 123. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. The rate of killing of Escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial growth. Microbiology 132(5), 1297–1304 (1986).
    • 124. Cochran WL, McFeters GA, Stewart PS. Reduced susceptibility of thin Pseudomonas aeruginosa biofilms to hydrogen peroxide and monochloramine. J. Appl. Microbiol. 88(1), 22–30 (2000).
    • 125. Ovais M, Khalil AT, Ayaz M, Ahmad I. Biosynthesized metallic nanoparticles as emerging cancer theranostics agents. In: Nanotheranostics, Springer, 229–244 (2019).
    • 126. Sani A, Hassan D, Khalil AT et al. Floral extracts-mediated green synthesis of NiO nanoparticles and their diverse pharmacological evaluations. J. Biomol. Struct. Dyn. 39(11), 4133–4147 (2021).
    • 127. Khan HA, Ghufran M, Shams S et al. In-depth in-vitro and in-vivo anti-diabetic evaluations of Fagonia cretica mediated biosynthesized selenium nanoparticles. Biomed. Pharmacother. 164, 114872 (2023).
    • 128. Liu C, Dong S, Wang X et al. Research progress of polyphenols in nanoformulations for antibacterial application. Mater. Today Bio. 21, 100729 (2023).
    • 129. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1(12), 1–17 (2016).
    • 130. Raghuwanshi VS, Garnier G. Characterisation of hydrogels: linking the nano to the microscale. Adv. Colloid Interface Sci. 274, 102044 (2019).
    • 131. Ickenstein LM, Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin. Drug Deliv. 16(11), 1205–1226 (2019).
    • 132. Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 44(10), 1094–1104 (2011).
    • 133. Huesca-Urióstegui K, García-Valderrama EJ, Gutierrez-Uribe JA, Antunes-Ricardo M, Guajardo-Flores D. Nanofiber systems as herbal bioactive compounds carriers: current applications in healthcare. Pharmaceutics 14(1), 191 (2022).
    • 134. Chouhan D, Janani G, Chakraborty B, Nandi SK, Mandal BB. Functionalized PVA–silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling. J. Tissue Eng. Regen. Med. 12(3), e1559–e1570 (2018).
    • 135. Patra JK, Das G, Fraceto LF et al. Nano-based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16(1), 1–33 (2018).
    • 136. Shukla A, Parmar P, Rao P, Goswami D, Saraf M. Twin peaks: presenting the antagonistic molecular interplay of curcumin with LasR and LuxR quorum sensing pathways. Curr. Microbiol. 77(8), 1800–1810 (2020).
    • 137. Abdulrahman H, Misba L, Ahmad S, Khan AU. Curcumin induced photodynamic therapy mediated suppression of quorum sensing pathway of Pseudomonas aeruginosa: an approach to inhibit biofilm in vitro. Photodiagnosis Photodyn. Ther. 30, 101645 (2020).
    • 138. Jourghanian P, Ghaffari S, Ardjmand M, Haghighat S, Mohammadnejad M. Sustained release curcumin loaded solid lipid nanoparticles. Adv. Pharm. Bull. 6(1), 17 (2016).
    • 139. Luan L, Chi Z, Liu C. Chinese white wax solid lipid nanoparticles as a novel nanocarrier of curcumin for inhibiting the formation of Staphylococcus aureus biofilms. Nanomaterials 9(5), 763 (2019).
    • 140. Hazzah HA, Farid RM, Nasra MM, Hazzah WA, El-Massik MA, Abdallah OY. Gelucire-based nanoparticles for curcumin targeting to oral mucosa: preparation, characterization, and antimicrobial activity assessment. J. Pharm. Sci. 104(11), 3913–3924 (2015).
    • 141. Ma S, Moser D, Han F, Leonhard M, Schneider-Stickler B, Tan Y. Preparation and antibiofilm studies of curcumin loaded chitosan nanoparticles against polymicrobial biofilms of Candida albicans and Staphylococcus aureus. Carbohydr. Polym. 241, 116254 (2020).
    • 142. Anbari H, Maghsoudi A, Hosseinpour M, Yazdian F. Acceleration of antibacterial activity of curcumin loaded biopolymers against methicillin-resistant Staphylococcus aureus: synthesis, optimization, and evaluation. Eng. Life Sci. 22(2), 58–69 (2022).
    • 143. Trigo Gutierrez JK, Zanatta GC, Ortega ALM et al. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial photodynamic therapy. PLOS ONE 12(11), e0187418 (2017).
    • 144. Song Z, Wu Y, Wang H, Han H. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Mater. Sci. Eng. C 99, 255–263 (2019).
    • 145. Loo C-Y, Rohanizadeh R, Young PM et al. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J. Agric. Food Chem. 64(12), 2513–2522 (2016).
    • 146. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10(3), 118 (2018).
    • 147. Fallah M, Bahrami SH, Ranjbar-Mohammadi M. Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. J. Ind. Text. 46(2), 562–577 (2016).
    • 148. Kaur A, Gabrani R, Dang S. Nanoemulsions of green tea catechins and other natural compounds for the treatment of urinary tract infection: antibacterial analysis. Adv. Pharm. Bull. 9(3), 401 (2019).
    • 149. Rahbar Takrami S, Ranji N, Sadeghizadeh M. Antibacterial effects of curcumin encapsulated in nanoparticles on clinical isolates of Pseudomonas aeruginosa through downregulation of efflux pumps. Mol. Biol. Rep. 46, 2395–2404 (2019).
    • 150. Barros CH, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J. Nanobiotechnology 19(1), 1–15 (2021).
    • 151. Bhatia E, Sharma S, Jadhav K, Banerjee R. Combinatorial liposomes of berberine and curcumin inhibit biofilm formation and intracellular methicillin-resistant Staphylococcus aureus infections and associated inflammation. J. Mater. Chem. B 9(3), 864–875 (2021).
    • 152. Shariati A, Asadian E, Fallah F et al. Evaluation ofnano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect. Drug Resist. 12, 2223–2235 (2019).
    • 153. Singh AK, Prakash P, Singh R et al. Curcumin quantum dots mediated degradation of bacterial biofilms. Front. Microbiol. 8, 1517 (2017).
    • 154. Lin Y-H, Feng C-L, Lai C-H, Lin J-H, Chen H-Y. Preparation of epigallocatechin gallate-loaded nanoparticles and characterization of their inhibitory effects on Helicobacter pylori growth in vitro and in vivo. Sci. Technol. Adv. Mater. 15(4), 045006 2014).
    • 155. Avila SRR, Schuenck GPD, e Silva LPC et al. High antibacterial in vitro performance of gold nanoparticles synthesized by epigallocatechin 3-gallate. J. Mater. Res. 36, 518–532 (2021).
    • 156. Zhou X, Pu H, Sun D-W. DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Crit. Rev. Food Sci. Nutr. 61(14), 2277–2296 (2021).
    • 157. Hu B, Shen Y, Adamcik J et al. Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity. ACS Nano 12(4), 3385–3396 (2018).
    • 158. Yang C, Wang Z, Gao Y et al. EGCG-coated silver nanoparticles self-assemble with selenium nanowires for treatment of drug-resistant bacterial infections by generating ROS and disrupting biofilms. Nanotechnology 33(41), 415101 (2022).
    • 159. Nguyen TLA, Bhattacharya D. Antimicrobial activity of quercetin: an approach to its mechanistic principle. Molecules 27(8), 2494 (2022).
    • 160. George D, Maheswari PU, Begum KMMS. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int. J. Biol. Macromol. 132, 784–794 (2019).
    • 161. Arasoğlu T, Derman S, Mansuroğlu B et al. Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens. Turk. J. Biol. 41(1), 127–140 (2017).
    • 162. Shabana M, Taju G, Majeed A, Karthika M, Ramasubramanian V, Sahul Hameed AS. Preparation and evaluation of mesoporous silica nanoparticles loaded quercetin against bacterial infections in Oreochromis niloticus. Aquac. Rep. 21, 100808 (2021).
    • 163. Vanaraj S, Keerthana BB, Preethi K. Biosynthesis, characterization of silver nanoparticles using quercetin from Clitoria ternatea L to enhance toxicity against bacterial biofilm. J. Inorg. Organomet. Polym. Mater. 27(5), 1412–1422 (2017).
    • 164. Yu L, Shang F, Chen X et al. The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 6, e5711 (2018).
    • 165. Pourhajibagher M, Alaeddini M, Etemad-Moghadam S et al. Quorum quenching of Streptococcus mutans via the nano-quercetin-based antimicrobial photodynamic therapy as a potential target for cariogenic biofilm. BMC Microbiol. 22(1), 125 (2022).
    • 166. Tran T-T, Hadinoto K. A Potential quorum-sensing inhibitor for bronchiectasis therapy: quercetin–chitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int. J. Mol. Sci. 22(4), 1541 (2021).
    • 167. Lee J-H, Park J-H, Cho HS, Joo SW, Cho MH, Lee J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29(5), 491–499 (2013).
    • 168. Zhang Z-Y, Sun Y, Zheng Y-D et al. A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. Mater. Sci. Eng. C 106, 110249 (2020).
    • 169. Qin Y, Wang J, Qiu C, Hu Y, Xu X, Jin Z. Self-assembly of metal–phenolic networks as functional coatings for preparation of antioxidant, antimicrobial, and pH-sensitive-modified starch nanoparticles. ACS Sustain. Chem. Eng. 7(20), 17379–17389 (2019).
    • 170. Yu Y, Li P, Zhu C, Ning N, Zhang S, Vancso GJ. Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing. Adv. Funct. Mater. 29(35), 1904402 (2019).
    • 171. Cao C, Yang N, Zhao Y et al. Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy. Nano Today 39, 101165 (2021).
    • 172. Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces 8(42), 28511–28521 (2016).
    • 173. Ni Z, Yu H, Wang L et al. Multistage ROS-responsive and natural polyphenol-driven prodrug hydrogels for diabetic wound healing. ACS Appl. Mater. Interfaces 14(47), 52643–52658 (2022).
    • 174. Liu L, Ge C, Zhang Y et al. Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation. Biomater. Sci. 8(17), 4852–4860 (2020).
    • 175. Heidari F, Akbarzadeh I, Nourouzian D, Mirzaie A, Bakhshandeh H. Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Adv. Powder Technol. 31(12), 4768–4781 (2020).
    • 176. Singhal AV, Malwal D, Thiyagarajan S, Lahiri I. Antimicrobial and antibiofilm activity of GNP-tannic acid-Ag nanocomposite and their epoxy-based coatings. Prog. Org. Coat. 159, 106421 (2021).
    • 177. Borges A, Ferreira C, Saavedra MJ, Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 19(4), 256–265 (2013).
    • 178. Lee JM, Choi K-H, Min J, Kim H-J, Jee J-P, Park BJ. Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus. Nanomaterials 7(11), 365 (2017).
    • 179. Vico TA, Arce VB, Fangio MF et al. Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae. J. Nanopart. Res. 18, 1–13 (2016).
    • 180. Magadla A, Openda YI, Mpeta LS, Nyokong T. Evaluation of the antibacterial activity of gallic acid anchored phthalocyanine-doped silica nanoparticles towards Escherichia coli and Staphylococcus aureus biofilms and planktonic cells. Photodiagnosis Photodyn. Ther. 42, 103520 (2023).
    • 181. Kim J, Choi Y, Park J, Choi J. Gelatin–gallic acid microcomplexes release GO/Cu nanomaterials to eradicate antibiotic-resistant microbes and their biofilm. ACS Infect. Dis. 9(2), 296–307 (2023).
    • 182. Vitonyte J, Manca ML, Caddeo C et al. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm. 114, 278–287 (2017).
    • 183. Abedini E, Khodadadi E, Zeinalzadeh E et al. A comprehensive study on the antimicrobial properties of resveratrol as an alternative therapy. Evid. Based Complement. Alternat. Med. 2021, 8866311 (2021).
    • 184. Summerlin N, Soo E, Thakur S, Qu Z, Jambhrunkar S, Popat A. Resveratrol nanoformulations: challenges and opportunities. Int. J. Pharm. 479(2), 282–290 (2015).
    • 185. Park S, Cha S-H, Cho I et al. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C 58, 1160–1169 (2016).
    • 186. Karakucuk A, Tort S. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals. Pharm. Dev. Technol. 25(10), 1216–1225 (2020).
    • 187. Angellotti G, Di Prima G et al. Multicomponent antibiofilm lipid nanoparticles as novel platform to ameliorate resveratrol properties: preliminary outcomes on fibroblast proliferation and migration. Int. J. Mol. Sci. 24(9), 8382 (2023).
    • 188. Aiello S, Pagano L, Ceccacci F et al. Mannosyl, glucosyl or galactosyl liposomes to improve resveratrol efficacy against methicillin resistant Staphylococcus aureus biofilm. Colloids Surf. A Physicochem. Eng. Asp. 617, 126321 (2021).
    • 189. Deepika MS, Thangam R, Sundarraj S et al. Co-delivery of diverse therapeutic compounds using PEG–PLGA nanoparticle cargo against drug-resistant bacteria: an improved anti-biofilm strategy. ACS Appl. Bio Mater. 3(1), 385–399 (2019).
    • 190. Dessai S, Ayyanar M, Amalraj S et al. Bioflavonoid mediated synthesis of TiO2 nanoparticles: characterization and their biomedical applications. Mater. Lett. 311, 131639 (2022).
    • 191. Deepika MS, Thangam R, Sundarraj S et al. Co-delivery of diverse therapeutic compounds using PEG–PLGA nanoparticle cargo against drug-resistant bacteria: an improved anti-biofilm strategy. ACS Appl. Bio Mater. 3(1), 385–399 (2020).
    • 192. Nguyen HT, Hensel A, Goycoolea FM. Chitosan/cyclodextrin surface-adsorbed naringenin-loaded nanocapsules enhance bacterial quorum quenching and anti-biofilm activities. Colloids Surf. B Biointerfaces 211, 112281 (2022).
    • 193. Rajkumari J, Busi S, Vasu AC, Reddy P. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microb. Pathog. 107, 261–269 (2017).
    • 194. Guo Q, Guo H, Lan T et al. Co-delivery of antibiotic and baicalein by using different polymeric nanoparticle cargos with enhanced synergistic antibacterial activity. Int. J. Pharm. 599, 120419 (2021).
    • 195. Prateeksha, Singh BR, Shoeb M et al. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front. Cell. Infect. Microbiol. 7, 93 (2017).
    • 196. Siddhardha B, Pandey U, Kaviyarasu K et al. Chrysin-loaded chitosan nanoparticles potentiates antibiofilm activity against Staphylococcus aureus. Pathogens 9(2), 115 (2020).
    • 197. Ilk S, Sağlam N, Özgen M, Korkusuz F. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int. J. Biol. Macromol. 94, 653–662 (2017).
    • 198. Pattnaik S, Barik S, Muralitharan G, Busi S. Ferulic acid encapsulated chitosan-tripolyphosphate nanoparticles attenuate quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. IET Nanobiotechnol. 12(8), 1056–1061 (2018).