We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Preliminary Communication

Antimicrobial activity of hydralazine against methicillin-resistant and methicillin-susceptible Staphylococcus aureus

    Francisca B Stefany Aires do Nascimento

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Lívia Gurgel do Amaral Valente Sá

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    Christus University Center (UNICHRISTUS), Fortaleza, CE, 60190-180, Brazil

    ,
    João B de Andrade Neto

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    Christus University Center (UNICHRISTUS), Fortaleza, CE, 60190-180, Brazil

    ,
    Lisandra Juvêncio da Silva

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Daniel Sampaio Rodrigues

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Vitória P de Farias Cabral

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Amanda Dias Barbosa

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Lara E Almeida Moreira

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Camille R Braga Vasconcelos

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Bruno Coêlho Cavalcanti

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Maria E França Rios

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Jacilene Silva

    Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil

    ,
    Emmanuel Silva Marinho

    Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil

    ,
    Helcio Silva dos Santos

    Science & Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, 62010-560, Brazil

    ,
    Jacó RL de Mesquita

    St. Joseph Hospital for Infectious Diseases, Fortaleza, CE, 60455-610, Brazil

    ,
    Marina Duarte Pinto Lobo

    Department of Biology, Federal University of Ceará, Fortaleza, CE, 60440-900, Brazil

    ,
    Manoel Odorico de Moraes

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    ,
    Hélio V Nobre Júnior

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    &
    Cecília Rocha da Silva

    *Author for correspondence: Tel.: +55 853 265 8152;

    E-mail Address: cecilia@ufc.br

    School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil

    Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil

    Published Online:https://doi.org/10.2217/fmb-2023-0160

    Background:Staphylococcus aureus is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. Materials & methods: The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. Results: MIC and minimum bactericidal concentration values ranged from 128 to 2048 μg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. Conclusion: Hydralazine is a potential antibacterial.

    Plain language summary

    Staphylococcus aureus is a bacterium that can cause infection. Infections of S. aureus are becoming difficult to treat, but developing new drugs is a challenge. Repurposing them may be easier. This study looks at the possibility of using hydralazine, a type of medicine used to treat high blood pressure, against S. aureus. The authors found that hydralazine can kill S. aureus and can be used with other antibiotics, including oxacillin and vancomycin. Hydralazine interferes with important processes for the multiplication and survival of this bacterium. These results are preliminary but encouraging. Further studies are needed to confirm the use of hydralazine as a new treatment for S. aureus infections.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Healthcare Settings: MRSA. CDC, GA, USA (2019).
    • 2. Said KB, Alghasab NS, Alharbi MSM et al. Molecular and source-specific profiling of hospital Staphylococcus aureus reveal dominance of skin infection and age-specific selections in pediatrics and geriatrics. Microorganisms. 149(17), 1–18 (2023).
    • 3. Singh DK, Kapoor R, Yadav PS et al. Morbidity and mortality of necrotizing fasciitis and their prognostic factors in children. J. Indian Assoc. Pediatr. Surg. 27(5), 577 (2022).
    • 4. Jevons MP. Methecillin resistance in staphylococci. Lancet 281(7287), 904–907 (1963).
    • 5. Pulingam T, Parumasivam T, Gazzali AM et al. Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 170, 106103 (2022). •• Addresses the resistance ESKAPE pathogens.
    • 6. Turner NA, Sharma-Kuinkel BK, Maskarinec SA et al. Methicillin-resistant Staphylococcus aureus: an overview of basic clinical research. Nat. Rev. Microbiol. 17(4), 203–218 (2020).
    • 7. Cangui-Panchi SP, Nacato-Toapanta AL, Joshu L, Reyes J, Garzon-Chavez D, Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: a systematic review. Curr. Res. Microb. Sci. 3, 1–12 (2022).
    • 8. Kourtis AP, Hatfield K, Baggs J et al. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections – United States. MMWR 68(9), 214–219 (2020). • Data on morbidity and mortality caused by Staphylococcus aureus in the USA.
    • 9. Antimicrobial Resistance in the EU/EEA (EARS-Net). Annual Epidemiological Report 2021. European Center for Diseases Prevention and Control, Stockholm, Sweden (2022).
    • 10. Obeidat H, El-Nasser Z, Amarin Z, Qablan A, Gharaibeh F. The impact of COVID-19 pandemic on healthcare associated infections. Medicine 102(15), 1–5 (2023).
    • 11. Garcia-Vidal C, Sanjuan G, Moreno-García E et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: retrospective cohort study. Clin. Microbiol. Infect. 27(1), 83–88 (2020).
    • 12. Lai C, Chen S, Ko W, Hsueh P. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 57(106324), 1–6 (2020).
    • 13. Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today 24(10), 2076–2085 (2019).
    • 14. Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 4(4), 565–577 (2019). •• The subject is the importance of drug repurposing.
    • 15. Shahzad Qamar A, Zamir A, Khalid S et al. A review on the clinical pharmacokinetics of hydralazine. Expert Opin. Drug Metab. Toxicol. 10(18), 707–714 (2022).
    • 16. Candelaria M, Burgos S, Ponce M, Espinoza R, Dueñas-Gonzalez A. Encouraging results with the compassionate use of hydralazine/valproate (TRANSKRIP™) as epigenetic treatment for myelodysplastic syndrome (MDS). Ann. Hematol. 96(11), 1825–1832 (2017). •• Repurposing hydralazine.
    • 17. Lopes N, Pacheco MB, Soares-Fernandes D et al. Hydralazine and enzalutamide: synergistic partners against prostate cancer. Biomedicines 9(8), 976 (2021).
    • 18. Vázquez AA, Torres FC, Ramírez BS et al. Cell-type dependent regulation of pluripotency and chromatin remodeling genes by hydralazine. Stem Cell Res. Ther. 14(42), 1–14 (2023).
    • 19. Ramesha KP, Mohana NC, Nayaka SC, Satish S. Epigenetic modifiers revamp secondary metabolite production in endophytic Nigrospora sphaerica. 12(730355), 1–8 (2021).
    • 20. Mistry S, Singh AK. Synthesis and in vitro antimicrobial activity of new steroidal hydrazone derivatives. Future J. Pharm. Sci. 8(7), 10 (2022).
    • 21. Awantu AF, Fongang YSF, Ayimele GA et al. Novel hydralazine Schiff base derivatives and their antimicrobial, antioxidant and antiplasmodial properties. Int. J. Organ. Chem. 10(1), 1–16 (2020).
    • 22. Clinical and Laboratory Standards Institute. Broth microdilution method. In: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically (10th Edition): Approved Standard M07-A10 (2015).
    • 23. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing Supplement M100S (26th Edition). (2016).
    • 24. Das B, Mandal D, Dash SK et al. Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infect. Dis. Res. Treat. 9, 11–19 (2016).
    • 25. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52(1), 1 (2003).
    • 26. Jorge P, Grzywacz D, Kamysz W, Lourenço A, Pereira MO. Searching for new strategies against biofilm infections: colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms. PLoS One 12(3), 1–20 (2017).
    • 27. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 40(2), 175–179 (2000).
    • 28. Costa EM, Silva S, Madureira AR, Cardelle-Cobas A, Tavaria FK, Pintado MM. A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro. Carbohydr. Polym. 101(1), 1081–1086 (2014).
    • 29. Queiroz HA, da Silva CR, de Andrade Neto JB et al. Synergistic activity of diclofenac sodium with oxacillin against planktonic cells and biofilm of methicillin-resistant Staphylococcus aureus strains. Future Microbiol. 16(6), 375–387 (2021).
    • 30. Neto JBA, da Silva CR, Nascimento FBSA et al. Screening of antimicrobial metabolite yeast isolates derived biome Ceará against pathogenic bacteria, including MRSA: antibacterial activity and mode of action evaluated by flow cytometry. Int. J. Curr. Microbiol. App. Sci. 4(5), 459–472 (2015).
    • 31. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell. 46(5), 561–572 (2012).
    • 32. Miloshev G, Mihaylov I, Anachkova B. Application of the single cell gel electrophoresis on yeast cells. 513(8), 69–74 (2002).
    • 33. Cavalcanti BC, Bezerra DP, Magalhães HIF et al. Kauren-19-oic acid induces DNA damage followed by apoptosis in human leukemia cells. J. Appl. Toxicol. 29(7), 560–568 (2009).
    • 34. Csizmadia P. MarvinSketch and MarvinView: molecule applets for the World Wide Web. Proceedings of The 3rdInternational Electronic Conference on Synthetic Organic Chemistry. 1–30 (1999).
    • 35. Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(17), 1–33 (2012).
    • 36. Halgren TA. Merck Molecular Force Field I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17(5), 490–519 (1996).
    • 37. Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF et al. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb. Pathog. 155(104892), 1–9 (2021).
    • 38. Yan J, Zhang G, Pan J, Wang Y. α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking. Int. J. Biol. Macromol. 64, 213–223 (2014).
    • 39. Huey R, Morris GM, Forli S. Using AutoDock 4 and AutoDock Vina with AutoDockTools: a tutorial. Scripps Res. Inst. Mol. 32(12), 1–32 (2012).
    • 40. Fujita J, Maeda Y, Nagao C et al. Crystal structure of FtsA from Staphylococcus aureus. FEBS Lett. 588(10), 1879–1885 (2014).
    • 41. Heaslet H, Harris M, Fahnoe K et al. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins Struct. Funct. Bioinforma. 76(3), 706–717 (2009).
    • 42. Bax BD, Chan PF, Eggleston DS et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466(7309), 935–940 (2010).
    • 43. Singh SB, Kaelin DE, Wu J et al. Tricyclic 1,5-naphthyridinone oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents-SAR of left-hand-side moiety (Part-2). Bioorganic Med. Chem. Lett. 25(9), 1831–1835 (2015).
    • 44. Neidle S, Mann J, Rayner EL et al. Symmetric bis-benzimidazoles: new sequence-selective DNA-binding molecules. Chem. Comm. 30(37), 929–930 (1999).
    • 45. Liu C, Liu GY, Song Y et al. Cholesterol biosynthesis inhibitor Blocks Staphylococcus aureus virulence. Science 319(5868), 1391–1394 (2009).
    • 46. Nguyen T, Kim T, Ta HM et al. Targeting mannitol metabolism as an alternative antimicrobial strategy based on the structure–function study of mannitol-1-phosphate dehydrogenase in Staphylococcus aureus. MBio 10(4), 1–23 (2019).
    • 47. Guillet V, Roblin P, Werner S et al. Crystal structure of leucotoxin S component: new insight into the staphylococcal β-barrel pore-forming toxins. J. Biol. Chem. 279(39), 41028–41037 (2004).
    • 48. Foletti D, Strop P, Shaughnessy L et al. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus α-hemolysin. J. Mol. Biol. 425(10), 1641–1654 (2013).
    • 49. Otero LH, Rojas-Altuve A, Llarrull LI et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc. Natl Acad. Sci. U. S. A. 110(42), 16808–16813 (2013).
    • 50. Qiu X, Janson CA, Smith WW et al. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. 10(10), 1925–2139 (2001).
    • 51. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2009).
    • 52. Marinho EM, Batista de Andrade Neto J, Silva J et al. Virtual screening based on molecular docking of possible inhibitors of COVID-19 main protease. Microb. Pathog. 148(6), 1–6 (2020).
    • 53. Yusuf D, Davis AM, Kleywegt GJ, Schmitt S. An alternative method for the evaluation of docking performance: RSR vs RMSD. J. Chem. Inf. Model. 48(7), 1411–1422 (2008).
    • 54. Shityakov S, Förster C. In silico predictive model to determine vector-mediated transport properties for the blood–brain barrier choline transporter. Adv. Appl. Bioinforma. Chem. 7(1), 23–36 (2014).
    • 55. Silva J, da Rocha MN, Marinho EM, Marinho MM, Marinho ES, dos Santos HS. Evaluation of the ADME, toxicological analysis and molecular docking studies of the anacardic acid derivatives with potential antibacterial effects against Staphylococcus aureus. J. Anal. Pharm. Res. 10(5), 177–194 (2021).
    • 56. Pettersen EF, Goddard TD, Huang CC et al. UCSF chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).
    • 57. Kadela-Tomanek M, Jastrzębska M, Marciniec K, Chrobak E, Bębenek E, Boryczka S. Lipophilicity, pharmacokinetic properties, and molecular docking study on SARS-CoV-2 target for betulin triazole derivatives with attached 1,4-quinone. Pharmaceutics 13(6), 781-802 (2021).
    • 58. Imberty A, Hardman KD, Carver JP, Perez S. Molecular modelling of protein–carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1(6), 631–642 (1991).
    • 59. Diekema DJ, Hsueh P, Mendes RE et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. 63(7), 1–10 (2019).
    • 60. Cassol R, Falci DR, Ramirez M. Epidemiology and risk factors for mortality among methicillin-resistant Staphylococcus aureus bacteremic patients in southern Brazil. 13(4), 1–9 (2023).
    • 61. Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics 11(10), 4910–4928 (2021). •• Addresses the issue of bacterial resistance and drug repurposing.
    • 62. Bauman J, Shaheen M, Verschraegen CF, Belinsky SA. A phase I protocol of hydralazine and valproic acid in advanced, previously treated solid cancers. Transl. Oncol. 7(3), 349–354 (2014).
    • 63. Candelaria M, Gallardo-Rincón D, Arce C et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol. 18(9), 1529–1538 (2007).
    • 64. Michki NS, Ndeh R, Helmin KA, Singer BD, Morrow SAM. DNA methyltransferase inhibition induces dynamic gene expression changes in lung – CD4+ T cells pneumonia. Sci. Rep. 13(4283), 1–11 (2023).
    • 65. Lopez M, Gilbert J, Contreras J, Halby L, Arimondo PB. Inhibitors of DNA Methylation. DNA Methyltransferases - Role and Function. 1398, 471–513 (2022).
    • 66. do Nascimento FB, Valente Sá LG, de Andrade Neto JB et al. Synergistic effect of hydralazine associated with triazoles on Candida spp. in planktonic cells. Future Microbiol. 18, 661–672 (2023).
    • 67. Morales G, Paredes A, Sierra P, Loyola LA. Antimicrobial activity of three baccharis species used in the traditional medicine of northern Chile. Molecules 13(4), 790–794 (2008).
    • 68. Josino MAA, Rocha da Silva C, de Andrade Neto JB et al. Development and in vitro evaluation of microparticles of fluoxetine in galactomannan against biofilms of S. aureus methicilin resistant. Carbohydr. Polym. 252(117184), 1–7 (2021).
    • 69. Av Sá LGD, Silva CRD, de Andrade Neto JB et al. Etomidate inhibits the growth of MRSA and exhibits synergism with oxacillin. Future Microbiol. 15(17), 1611–1619 (2020).
    • 70. Saha I, Ghosh N, Plewczynski D et al. Identification of human miRNA biomarkers targeting the SARS-CoV-2 genome. ACS Omega 7(50), 46411–46420 (2022).
    • 71. Ranjan K, Brandão F, Morais JAV et al. The role of Cryptococcus neoformans histone deacetylase genes in the response to antifungal drugs, epigenetic modulators and to photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion in vitro. J. Photochem. Photobiol. B. Biol. 216(112131), 1–13 (2021).
    • 72. Coronel J, Cetina L, Pacheco I, Perez-Cardenas EDCE, Gonza A, Duen A. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med. Oncol. 28, 540–546 (2011).
    • 73. Li M, Yu J, Guo G, Shen H. Interactions between macrophages and biofilm during Staphylococcus aureus-associated implant infection: difficulties and solutions. J Innate Immun. 15(1), 499–515 (2023).
    • 74. Liu Y, Zhang J, Ji Y. Environmental factors modulate biofilm formation by Staphylococcus aureus. Sci. Prog. 103(1), 1–14 (2020).
    • 75. Mahdally NH, George RF, Kashef MT, Al-Ghobashy M, Murad FE, Attia AS. Staquorsin: a novel Staphylococcus aureus Agr-mediated quorum sensing inhibitor impairing virulence in vivo without notable resistance development. Front. Microbiol. 12, 1–12 (2021).
    • 76. Marutescu LG. Current and future flow cytometry applications contributing to antimicrobial resistance control. Microorganisms 11(5), 1–17 (2023).
    • 77. Batista de Andrade Neto J, Alexandre Josino MA, Rocha da Silva C et al. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb. Pathog. 127, 335–340 (2019).
    • 78. Bayles KW. Making sense of a paradox. Nat. Publ. Gr. 12(1), 63–69 (2014). •• Addresses the complexity of bacterial cell death.
    • 79. Melton D, Lewis CD, Price NE, Gates KS. Covalent adduct formation between the antihypertensive drug hydralazine and abasic sites in double- and single-stranded DNA. Chem. Res. Toxicol. 27(12), 2113–2118 (2014). •• Authors show that the genotic properties of hydralazine possibly occur due to endogenous DNA damage.
    • 80. Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl. Microbiol. Biotechnol. 92(3), 479–497 (2011).
    • 81. Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase: role of GyrB. Antimicrob Agents Chemother. 46(6), 1805–1815 (2002).
    • 82. Spencer AC, Panda SS. DNA gyrase as a target for quinolones. Biomedicines 11(371), 1–27 (2023). •• Addresses the drugs acting on DNA gyrase.
    • 83. Lahiri SD, Kutschke A, McCormack K, Alm RA. Insights into the mechanism of inhibition of novel bacteria topoisomerase inhibitors from characterization of resistant mutants of Staphylococcus aureus. Antimicrob. Agents Chemother. 59(9), 5278–5287 (2015).
    • 84. Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int J Mol Sci. 23(15), 8088–8121 (2022).
    • 85. Brick P, Blow DM. Crystal structure of a deletion mutant of a tyrosyl-tRNA synthetase complexed with tyrosine. J Mol Biol. 194(2), 287–289 (1987).
    • 86. Bedouelle H. Tyrosyl-tRNA synthetases. Madame Curie Bioscience Database (2013).