We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Antimicrobial therapy using VIS plus water-filtered infrared-A as an alternative method to treat oral diseases

    Sara Bernardi

    *Author for correspondence:

    E-mail Address: sara.bernardi@univaq.it

    Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy

    ,
    Davide Gerardi

    Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy

    Department of Innovative Technologies in Medicine & Dentistry, Dental School, ‘G D'Annunzio’ University of Chieti–Pescara, Chieti, 66100, Italy

    ,
    Sibylle Bartsch

    Department of Operative Dentistry & Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106666, Germany

    ,
    Guido Macchiarelli

    Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy

    ,
    Elmar Hellwig

    Department of Operative Dentistry & Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106666, Germany

    &
    Ali Al-Ahmad

    Department of Operative Dentistry & Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106666, Germany

    Published Online:https://doi.org/10.2217/fmb-2023-0127

    Oral biofilm is the main cause of pathologies affecting the hard and soft oral tissues around teeth. Its main components are the periodontal pathogens and other bacteria of the supragingival and subgingival biofilm. Different alternative strategies that could be adjuvants to the usual periodontal treatments used to eliminate biofilms are available. One of these methods is antimicrobial photodynamic therapy using VIS and water-filtered infrared-A combined with a photosensitizer. In this review, different recent studies were collected to evaluate the antimicrobial effects of antimicrobial photodynamic therapy and the effectiveness of different types of photosensitizers.

    Plain language summary

    This review summarizes different types of photodynamic therapy, a type of treatment that uses light to kill cells, which can be used to decontaminate the mouth and teeth. There are many bacteria in our mouths and on the surface of our teeth that can cause infections, such as dental caries, periodontitis and peri-implantitis. This review also looks at how effective these treatments are and suggests the use of clinical trials to confirm our findings.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Al-Ahmad A, Walankiewicz A, Hellwig E et al. Photoinactivation using visible light plus water-filtered infrared-A (vis + wIRA) and chlorine e6 (Ce6) eradicates planktonic periodontal pathogens and subgingival biofilms. Front. Microbiol. 7, 1900 (2016). • Explains the physiopathology of biofilm and the mechanism of action of antimicrobial photodynamic therapy (aPDT).
    • 2. Madianos PN, Bobetsis YA, Kinane DF. Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J. Clin. Periodontol. 32(Suppl. 6), 57–71 (2005).
    • 3. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8, 481–490 (2010).
    • 4. Tsai CY, Tang CY, Tan TS, Chen KH, Liao KH, Liou ML. Subgingival microbiota in individuals with severe chronic periodontitis. J. Microbiol. Immunol. Infect. 51(2), 226–234 (2018).
    • 5. Torrungruang K, Jitpakdeebordin S, Charatkulangkun O, Gleebbua Y. Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola / Prevotella intermedia co-infection are associated with severe periodontitis in a Thai population. PLoS One 10(8), e0136646 (2015).
    • 6. Contaldo M, Lucchese A, Romano A et al. Oral microbiota features in subjects with Down syndrome and periodontal diseases: a systematic review. Int. J. Mol. Sci. 22(19), 9251 (2021).
    • 7. Cieplik F, Deng D, Crielaard W et al. Antimicrobial photodynamic therapy – what we know and what we don't. Crit. Rev. Microbiol. 44(5), 571–589 (2018). • Explains the physiopathology of biofilm and the mechanism of action of aPDT.
    • 8. Bernardi S, Anderson A, Macchiarelli G et al. Subinhibitory antibiotic concentrations enhance biofilm formation of clinical Enterococcus faecalis isolates. Antibiotics (Basel) 10(7), 874 (2021). • Explains the mechanisms of antibiotic resistance.
    • 9. Flemming HC, Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 8(9), 623–633 (2010). • Useful for understanding biofilm structure.
    • 10. Marchetti E, Tecco S, Caterini E et al. Alcohol-free essential oils containing mouthrinse efficacy on three-day supragingival plaque regrowth: a randomized crossover clinical trial. Trials 18(1), 154 (2017).
    • 11. Luzi S, Mancini L, Tarallo F et al. Effects of single rinse with three different types of mouthwashes on VSCs levels in morning breath: randomized, double-blind, crossover clinical trial. Int. J. Dent. Hyg. 21(2), 417–425 (2022).
    • 12. Bianchi S, Fantozzi G, Bernardi S, Antonouli S, Continenza MA, Macchiarelli G. Commercial oral hygiene products and implant collar surfaces: scanning electron microscopy observations. Can. J. Dent. Hyg. 54(1), 26–31 (2020).
    • 13. Bernardi S, Qorri E, Botticelli G et al. Use of electrical field for biofilm implant removal. Eur. Rev. Med. Pharmacol. Sci. 27(Suppl. 3), 114–121 (2023).
    • 14. Wainwright M, Maisch T, Nonell S et al. Photoantimicrobials – are we afraid of the light? Lancet Infect. Dis. 17(2), e49–e55 (2017).
    • 15. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54(5), 659 (1991).
    • 16. Cieplik F, Tabenski L, Buchalla W, Maisch T. Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front. Microbiol. 5, 405 (2014).
    • 17. Maisch T, Szeimies RM, Jori G, Abels C. Antibacterial photodynamic therapy in dermatology. Photochem. Photobiol. Sci. 3(10), 907–917 (2004).
    • 18. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem. J. 473(4), 347–364 (2016).
    • 19. Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 27(4), 293–302 (2018).
    • 20. Alves E, Faustino MA, Neves MG, Cunha A, Tome J, Almeida A. An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem. 6(2), 141–164 (2014).
    • 21. de Cassia Martins Antunes de Melo W, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 12(1), 2247–2272 (2021). • Important for understanding the potential of new technologies in biofilm treatments.
    • 22. Karygianni L, Ruf S, Follo M et al. Novel broad-spectrum antimicrobial photoinactivation of in situ oral biofilms by visible light plus water-filtered infrared A. Appl. Environ. Microbiol. 80(23), 7324–7336 (2014).
    • 23. de Oliveira SCPS, Monteiro JSC, Pires-Santos GM et al. LED antimicrobial photodynamic therapy with phenothiazinium dye against Staphylococcus aureus: an in vitro study. J. Photochem. Photobiol. B 175, 46–50 (2017).
    • 24. Al-Ahmad A, Tennert C, Karygianni L, Wrbas KT, Hellwig E, Altenburger MJ. Antimicrobial photodynamic therapy using visible light plus water-filtered infrared-A (wIRA). J. Med. Microbiol. 62(Pt 3), 467–473 (2013).
    • 25. Hartel M, Hoffmann G, Wente MN, Martignoni ME, Büchler MW, Friess H. Randomized clinical trial of the influence of local water-filtered infrared A irradiation on wound healing after abdominal surgery. Br. J. Surg. 93(8), 952–960 (2006).
    • 26. Burchard T, Karygianni L, Hellwig E et al. Inactivation of oral biofilms using visible light and water-filtered infrared A radiation and indocyanine green. Future Med. Chem. 11(14), 1721–1739 (2019).
    • 27. Al-Ahmad A, Bucher M, Anderson AC et al. Antimicrobial photoinactivation using visible light plus water-filtered infrared-A (VIS + wIRA) alters in situ oral biofilms. PLoS One 10(7), e0132107 (2015).
    • 28. Burchard T, Karygianni L, Hellwig E, Wittmer A, Al-Ahmad A. Microbial composition of oral biofilms after visible light and water-filtered infrared A radiation (VIS+wIRA) in combination with indocyanine green (ICG) as photosensitizer. Antibiotics (Basel) 9(9), 532 (2020).
    • 29. Solarte DLG, Rau SJ, Hellwig E, Vach K, Al-Ahmad A. Antimicrobial behavior and cytotoxicity of indocyanine green in combination with visible light and water-filtered infrared A radiation against periodontal bacteria and subgingival biofilm. Biomedicines 10(5), 956 (2022).
    • 30. Vollmer A, Al-Ahmad A, Argyropoulou A et al. Antimicrobial photoinactivation using visible light plus water-filtered infrared-A (VIS + wIRA) and Hypericum perforatum modifies in situ oral biofilms. Sci. Rep. 9(1), 20325 (2019).
    • 31. Karygianni L, Ruf S, Hellwig E, Follo M, Vach K, Al-Ahmad A. Antimicrobial photoinactivation of in situ oral biofilms by visible light plus water-filtered infrared A and tetrahydroporphyrin-tetratosylate (THPTS). Microorganisms 9(1), 145 (2021).
    • 32. Chrubasik-Hausmann S, Hellwig E, Müller M, Al-Ahmad A. Antimicrobial photodynamic treatment with mother juices and their single compounds as photosensitizers. Nutrients 13(3), 710 (2021).
    • 33. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16(12), 745–759 (2018).
    • 34. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA 113(6), e791–e800 (2016).
    • 35. Cherrick GR, Stein SW, Leevy CM, Davidson CS. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J. Clin. Invest. 39(4), 592–600 (1960).
    • 36. Wang W, Cheng X, Liao J et al. Synergistic photothermal and photodynamic therapy for effective implant-related bacterial infection elimination and biofilm disruption using Cu9S8 nanoparticles. ACS Biomater. Sci. Eng. 5(11), 6243–6253 (2019).
    • 37. Chen Y, Huang W, Dong Y et al. Enhanced antibacterial activity of indocyanine green-loaded graphene oxide via synergistic contact killing, photothermal and photodynamic therapy. J. Biomed. Nanotechnol. 18(1), 185–192 (2022).
    • 38. Yu C, Sui S, Yu X et al. Ti3C2Tx MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium. Colloids Surf. B Biointerfaces 217, 112663 (2022).
    • 39. Su W, Jiang X, Zhang Y et al. Photothermal-driven disassembly of naphthalocyanine nano-photosensitizers for photothermal and photodynamic therapy. J. Colloid Interface Sci. 647, 201–210 (2023).
    • 40. Peikert SA, Fischer A, Kruse AB et al. Adjuvant transgingival therapy with visible light plus water-filtered infrared-A (VIS + wIRA) in periodontal therapy – a randomized, controlled, stratified, double-blinded clinical trial. Antibiotics (Basel) 10(3), 251 (2021).
    • 41. Gholami L, Shahabi S, Jazaeri M, Hadilou M, Fekrazad R. Clinical applications of antimicrobial photodynamic therapy in dentistry. Front. Microbiol. 13, 1020995 (2023).