We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Paving the way to an antivirulence strategy against fungal pathogens: lessons learned from Candida albicans

    André LS Santos

    *Author for correspondence:

    E-mail Address: andre@micro.ufrj.br

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil

    Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941–902, Brazil

    ,
    Lívia S Ramos

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil

    ,
    Thaís P Mello

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil

    &
    Marta H Branquinha

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil

    Rede Micologia RJ – Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941–902, Brazil

    Published Online:https://doi.org/10.2217/fmb-2023-0105
    Free first page

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Wiederhold NP. Emerging fungal infections: new species, new names, and antifungal resistance. Clin. Chem. 68(1), 83–90 (2021). •• An excellent overview about fungal infection considering the most relevant fungal species in a global perspective.
    • 2. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. World Health Organization, Geneva,Switzerland, Licence: CC BY-NC-SA 3.0 IGO (2022). •• A review of the main relevant fungal species able to cause human diseases and their relevance in incidence, prevalence and resistance.
    • 3. Watkins RR, Bonomo RA. Overview: global and local impact of antibiotic resistance. Infect. Dis. Clin. North Am. 30, 313–322 (2016).
    • 4. Ivanov M, Ćirić A, Stojković D. Emerging antifungal targets and strategies. Int. J. Mol. Sci. 23(5), 2756 (2022). • A review about the main fungal targets to be used in new chemotherapeutical proposals.
    • 5. Tsai CW, Morris S. Approval of raxibacumab for the treatment of inhalation anthrax under the US food and drug administration ‘Animal Rule’. Front. Microbiol. 6, 1320 (2015).
    • 6. Greig SL. Obiltoxaximab: first global approval. Drugs 76, 823–830 (2016).
    • 7. Staniszewska M. Virulence factors in Candida species. Curr. Protein Pept. Sci. 21(3), 313–323 (2020).
    • 8. Pierce CG, Lopez-Ribot JL. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin. Drug Discov. 8(9), 1117–1126 (2013). •• An excellent overview about antivirulence strategies against Candida species.
    • 9. Sá NP, Barros PP, Junqueira JC et al. Antivirulence activity and in vivo efficacy of a thiazole derivative against candidiasis. J. Mycol. Med. 31(2), 101134 (2021).
    • 10. Croxtall JD, Perry CM. Lopinavir/ritonavir: a review of its use in the management of HIV-1 infection. Drugs 70(14), 1885–1915 (2010).
    • 11. Santos ALS, Braga-Silva LA, Gonçalves DS et al. Repositioning lopinavir, an HIV protease inhibitor, as a promising antifungal drug: lessons learned from Candida albicansin silico, in vitro and in vivo approaches. J. Fungi (Basel) 7(6), 424 (2021).
    • 12. Arip M, Selvaraja M, Mogana R et al. Review on plant-based management in combating antimicrobial resistance – mechanistic perspective. Front. Pharmacol. 13, 879495 (2022).
    • 13. Lee JH, Kim YG, Choi P et al. Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front. Cell. Infect. Microbiol. 8, 299 (2018).
    • 14. Albayaty YN, Thomas N, Ramírez-García PD et al. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm. Drug Deliv. Transl. Res. 11(4), 1586–1597 (2021).
    • 15. Romo JA, Pierce CG, Chaturvedi AK et al. Development of anti-virulence approaches for candidiasis via a novel series of small-molecule inhibitors of Candida albicans filamentation. mBio 8(6), e01991–17 (2017).
    • 16. Huang J, Song S, Zhao S et al. Anti-virulence activity of novel (1-heteroaryloxy-2-hydroxypropyl)-phenylpiperazine derivatives against both wild-type and clinical drug-resistant Candida albicans strains. Microb. Biotechnol. 16(1), 116–127 (2023).
    • 17. Sun H, Sun K, Sun J. Recent advances of marine natural indole products in chemical and biological aspects. Molecules 28(5), 2204 (2023).
    • 18. Manoharan RK, Lee JH, Lee J. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation. Microb. Biotechnol. 11(6), 1060–1069 (2018).
    • 19. Krishna MSA, Mohan S, Ashitha KT et al. Marine based natural products: exploring the recent developments in the identification of antimicrobial agents. Chem. Biodivers. 19(10), e202200513 (2022).
    • 20. Subramenium GA, Swetha TK, Iyer PM, Balamurugan K, Pandian SK. 5-Hydroxymethyl-2-furaldehyde from marine bacterium Bacillus subtilis inhibits biofilm and virulence of Candida albicans. Microbiol. Res. 207, 19–32 (2018).