We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Triple in silico targeting of IMPDH enzyme and RNA-dependent RNA polymerase of both SARS-CoV-2 and Rhizopus oryzae

    Abdel-moniem S Hassan

    Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt

    ,
    Abdo A Elfiky

    *Author for correspondence: Tel.: +20 100 326 0523;

    E-mail Address: dr_abdo@cu.edu.eg

    Biophysics Department, Faculty of Sciences, Cairo University, Giza, Dokki, 12613, Egypt

    &
    Alaa M Elgohary

    Biophysics Department, Faculty of Sciences, Cairo University, Giza, Dokki, 12613, Egypt

    Published Online:https://doi.org/10.2217/fmb-2023-0103

    Aim: Mucormycosis has been associated with SARS-CoV-2 infections during the last year. The aim of this study was to triple-hit viral and fungal RNA-dependent RNA polymerases (RdRps) and human inosine monophosphate dehydrogenase (IMPDH). Materials & methods: Molecular docking and molecular dynamics simulation were used to test nucleotide inhibitors (NIs) against the RdRps of SARS-CoV-2 and Rhizopus oryzae RdRp. These same inhibitors targeted IMPDH. Results: Four NIs revealed a comparable binding affinity to the two drugs, remdesivir and sofosbuvir. Binding energies were calculated using the most abundant conformations of the RdRps after 100-ns molecular dynamics simulation. Conclusion: We suggest the triple-inhibition potential of four NIs against pathogenic RdRps and IMPDH, which is worth experimental validation.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Werthman-Ehrenreich A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am. J. Emerg. Med. 42, 264.e265–264.e268 (2021). •• Refers to COVID-19 and mucormycosis coinfection during the 2021 pandemic.
    • 2. Vaidyanathan G. Coronavirus variants are spreading in India – what scientists know so far. Nature 332 (2021).
    • 3. Elgohary AM, Elfiky AA, Barakat K. GRP78: a possible relationship of COVID-19 and the mucormycosis; in silico perspective. Comp. Biol. Med. 139, 104956 (2021).
    • 4. Elfiky AA. Dual targeting of RdRps of SARS-CoV-2 and the mucormycosis-causing fungus: an in silico perspective. Future Microbiol. 17(10), 755–762 (2022).
    • 5. Abduljalil JM, Elfiky AA, Elgohary AM. Exploration of natural compounds against the human mpox virus DNA-dependent RNA polymerase in silico. J. Infect. Public Health 16(7), 996–1003 (2023).
    • 6. Sonousi A, Mahran HA, Ibrahim IM, Ibrahim MN, Elfiky AA, Elshemey WM. Novel adenosine derivatives against SARS-CoV-2 RNA-dependent RNA polymerase: an in silico perspective. Pharmacol. Rep. 73(6), 1754–1764 (2021).
    • 7. Beigel JH, Tomashek KM, Dodd LE et al. Remdesivir for the treatment of Covid-19. N. Engl. J. Med. 383(19), 1813–1826 (2020). •• Refer to the use of remdesivir against COVID-19 at the start of the pandemic.
    • 8. Elfiky AA, Elshemey WM. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J. Med. Virol. 90(1), 13–18 (2018).
    • 9. Elfiky AA. Novel guanosine derivatives against Zika virus polymerase in silico. J. Med. Virol. 92(1), 11–16 (2020).
    • 10. Elfiky AA. The antiviral sofosbuvir against mucormycosis: an in silico perspective. Future Virol. 14(11), 739–744 (2019). • In this paper sofosbuvir was predicted to bind to RNA-dependent RNA polymerase (RdRp) of Rhizopus oryzae.
    • 11. Burrell AL, Kollman JM. IMPDH dysregulation in disease: a mini review. Biochem. Soc. Transact. 50(1), 71–82 (2022).
    • 12. Valvezan AJ, Mcnamara MC, Miller SK et al. IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex. JCI Insight 5(7), (2020).
    • 13. Shu Q, Nair V. Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med. Res. Rev. 28(2), 219–232 (2008). • This paper refers to the therapeutic potential of inosine monophosphate dehydrogenase.
    • 14. Burrell AL, Kollman JM. IMPDH dysregulation in disease: a mini review. Biochem. Soc. Trans. 50(1), 71–82 (2022).
    • 15. Hedstrom L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem. Rev. 109(7), 2903–2928 (2009).
    • 16. Loustaud-Ratti V, Debette-Gratien M, Jacques J et al. Ribavirin: past, present and future. World J. Hepatol 8(2), 123–130 (2016).
    • 17. Chen L, Wilson DJ, Xu Y et al. Triazole-linked inhibitors of inosine monophosphate dehydrogenase from human and Mycobacterium tuberculosis. J. Med. Chem. 53(12), 4768–4778 (2010).
    • 18. Jouzani GS, Valijanian E, Sharafi R. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 101(7), 2691–2711 (2017).
    • 19. Abbas MST. Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt. J. Biol. Pest Control 28(1), 52 (2018).
    • 20. Kim S, Thiessen PA, Bolton EE et al. PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2016).
    • 21. O'boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J. Cheminform. 3(1), 33 (2011).
    • 22. Morris GM, Huey R, Lindstrom W et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009).
    • 23. Gao Y, Yan L, Huang Y et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(6492), 779–782 (2020).
    • 24. Biasini M, Bienert S, Waterhouse A et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42(Web Server issue), W252–W258 (2014).
    • 25. Pettersen EF, Goddard TD, Huang CC et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Computat. Chem. 25(13), 1605–1612 (2004).
    • 26. Elfiky AA, Azzam EB, Shafaa MW. The anti-HCV, sofosbuvir, versus the anti-EBOV remdesivir against SARS-CoV-2 RNA dependent RNA polymerase in silico. Mol. Divers 26(1), 171–181 (2022). •• Refers to the effectiveness of sofosbuvir and remdesivir against SARS-CoV-2 RdRp.
    • 27. Rauf MA, Zubair S, Azhar A. Ligand docking and binding site analysis with pymol and autodock/vina. Int. J. Basic Appl. Sci. 4(2), 168 (2015).
    • 28. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010).
    • 29. Seeliger D, De Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided. Mol. Des. 24(5), 417–422 (2010).
    • 30. Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 2.4.1 Schrödinger, LLC. https://pymol.org/2/
    • 31. Jejurikar BL, Rohane SH. Drug designing in discovery studio. Asian J. Res. Chem. 14(2), 135–138 (2021).
    • 32. Elfiky AA. Zika virus: novel guanosine derivatives revealed strong binding and possible inhibition of the polymerase. Future Virol. 12(12), 721–728 (2017).
    • 33. Elfiky AA, Ismail A. Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sci. 238, 116958 (2019).
    • 34. Elfiky AA. Novel guanosine derivatives as anti-HCV NS5b polymerase: a QSAR and molecular docking study. Med. Chem. 15(2), 130–137 (2019).
    • 35. Adem S, Eyupoglu V, Sarfraz I et al. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine 85, 153310 (2021).
    • 36. Silver LL. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6(1), 41–55 (2007).
    • 37. Joshi RS, Jagdale SS, Bansode SB et al. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomolec. Struct. Dynam. 39(9), 3099–3114 (2021).
    • 38. Mishra P, Kumar A, Panda G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer's disease (1998–2018). Bioorg. Med. Chem. 27(6), 895–930 (2019).
    • 39. Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules 25(8), 1987 (2020).
    • 40. Trapero A, Pacitto A, Singh V et al. Fragment-based approach to targeting inosine-5′-monophosphate dehydrogenase (IMPDH) from Mycobacterium tuberculosis. J. Med. Chem. 61(7), 2806–2822 (2018).
    • 41. Eweas AF, Alhossary AA, Abdel-Moneim AS. Molecular docking reveals ivermectin and remdesivir as potential repurposed drugs against SARS-CoV-2. Front. Microbiol. 11, 592908 (2020).
    • 42. Patil SM, Maruthi KR, Bajpe SN et al. Comparative molecular docking and simulation analysis of molnupiravir and remdesivir with SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Bioinformation 17(11), 932–939 (2021).
    • 43. Gan CS, Lim SK, Chee CF, Yusof R, Heh CH. Sofosbuvir as treatment against dengue? Chem. Biol. Drug Des. 91(2), 448–455 (2018).
    • 44. Yang H, Huang Y, Wu D, Yan J, He J, Li H. In vitro investigation of the interaction between the hepatitis C virus drug sofosbuvir and human serum albumin through 1H NMR, molecular docking, and spectroscopic analyses. N. J. Chem. 40(3), 2530–2540 (2016).
    • 45. De Freitas CS, Higa LM, Sacramento CQ et al. Yellow fever virus is susceptible to sofosbuvir both in vitro and in vivo. PLOS Negl. Trop. Dis. 13(1), e0007072 (2019).