We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Effect of rapamycin on Cryptococcus neoformans: cellular organization, biophysics and virulence factors

    Iara Bastos de Andrade‡

    Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

    ‡Contributed equally to this work

    Search for more papers by this author

    ,
    Vinicius Alves‡

    Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

    ‡Contributed equally to this work

    Search for more papers by this author

    ,
    Luiza Pereira

    Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

    ,
    Bruna Miranda

    Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

    ,
    Dario Corrêa-Junior

    Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

    ,
    Maria Helena Galdino Figueiredo-Carvalho

    Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

    ,
    Marcos Vinicius Santos

    Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

    ,
    Rodrigo Almeida-Paes

    Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

    Rede Micologia – FAPERJ, Rio de Janeiro, Brazil

    &
    Susana Frases

    *Author for correspondence: Tel.: +55 213 938 6564;

    E-mail Address: susanafrases@biof.ufrj.br

    Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

    Rede Micologia – FAPERJ, Rio de Janeiro, Brazil

    Published Online:https://doi.org/10.2217/fmb-2023-0097

    Background:Cryptococcus neoformans is an opportunistic fungal pathogen that causes infections mainly in immunosuppressed individuals, such as transplant recipients. Aims: This study investigated the effects of rapamycin, an immunosuppressant drug, on the cellular organization, biophysical characteristics, and main virulence factors of C. neoformans. Methods: Morphological, structural, physicochemical and biophysical analyses of cells and secreted polysaccharides of the reference H99 C. neoformans strain were investigated under the effect of subinhibitory concentrations of rapamycin. Results: Rapamycin at a minimum inhibitory concentration of 2.5 μM reduced C. neoformans cell viability by 53%, decreased capsule, increased cell size, chitin and lipid body formation, and changed peptidase and urease activity. Conclusion: Further studies are needed to assess how rapamycin affects the virulence factors and pathogenicity of C. neoformans.

    Plain language summary

    Cryptococcosis is a fungal infection caused by a type of fungus called Cryptococcus. Among the Cryptococcus group, Cryptococcus neoformans is often linked to fungal infections in people who have a weak immune system (known as being immunosuppressed). The main aim of this work was to look at the effect of an immunosuppressant called rapamycin, which is commonly used to prevent organ transplant rejection, on the ability of C. neoformans to cause infection. The results showed that this drug stopped the growth of the fungus, dampening its ability to cause disease.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Patel R, Paya CV. Infections in solid-organ transplant recipients. Clin. Microbiol. Rev. 10(1), 86–124 (1997).
    • 2. Kumar R, Ison MG. Opportunistic infections in transplant patients. Infect. Dis. Clin. North Am. 33(4), 1143–1157 (2019). • Describes the main opportunistic infections in patients who receive an organ transplant.
    • 3. Pappas PG, Perfect JR, Cloud GA et al. Cryptococcosis in human immunodeficiency virus-negative patients in the era of effective azole therapy. Clin. Infect. Dis. 33(5), 690–699 (2001).
    • 4. Dromer F, Mathoulin-Pélissier S, Launay O et al. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med. 4(2), 0297–0308 (2007).
    • 5. Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, Heitman J. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3(10), 753–764 (2005).
    • 6. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence 10(1), 490–501 (2019).
    • 7. Goldman JD, Vollmer ME, Luks AM. Cryptococcosis in the immunocompetent patient. Respir. Care 55(11), 1499–1503 (2010).
    • 8. Chayakulkeeree M, Perfect J. Chapter 14. Cryptococcosis. Infect. Dis. Diagnosis Treament Hum. Mycoses (5), 255–276 (2008).
    • 9. Colombo AC, Rodrigues ML. Fungal colonization of the brain: anatomopathological aspects of neurological cryptococcosis epidemic in HIV patients. An. Acad. Bras. Cienc. 87(Suppl. 2), 1293–1309 (2015).
    • 10. Sun HY, Wagener MM, Singh N. Cryptococcosis in solid-organ, hematopoietic stem cell, and tissue transplant recipients: evidence-based evolving trends. Clin. Infect. Dis. 48(11), 1566–1576 (2009).
    • 11. Baddley JW, Forrest GN. Cryptococcosis in solid organ transplantation – guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transplant. 33(9), e13543 (2019).
    • 12. Li SS, Mody CH. Cryptococcus. Proc. Am. Thorac. Soc. 7(3), 186–196 (2010).
    • 13. Goldman DL, Fries BC, Franzot SP, Montella L, Casadevall A. Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc. Natl Acad. Sci. USA 95(25), 14967–14972 (1998).
    • 14. Akaihe CL, Nweze EI. Epidemiology of Cryptococcus and cryptococcosis in Western Africa. Mycoses 64(1), 4–17 (2021).
    • 15. Allison TL. Immunosuppressive therapy in transplantation. Nurs. Clin. North Am. 51(1), 107–120 (2016).
    • 16. Yakupoglu YK, Kahan BD. Sirolimus: a current perspective. Exp. Clin. Transplant. 1(1), 8–18 (2003).
    • 17. Sehgal SN. Sirolimus: Its discovery, biological properties, and mechanism of action. Transplant. Proc. 35(Suppl. 3), S7–S14 (2003).
    • 18. Sun SY, Rosenberg LM, Wang X et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65(16), 7052–7058 (2005).
    • 19. Chan S. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br. J. Cancer 91(8), 1420–1424 (2004). • Describes the cellular actions of rapamycin in mammals.
    • 20. Weichhart T, Hengstschläger M, Linke M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15(10), 599–614 (2018).
    • 21. Cruz MC, Goldstein AL, Blankenship J et al. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob. Agents Chemother. 45(11), 3162–3170 (2001). •• Reports that C. neoformans shares a signaling pathway with rapamycin.
    • 22. Cruz MC, Cavallo LM, Görlach JM et al. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol. Cell. Biol. 19(6), 4101–4112 (1999). •• It provides confirmation of rapamycin's action within the signaling pathway of C. neoformans.
    • 23. García-Rodas R, Cordero RJB, Trevijano-Contador N et al. Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression. MBio 5(3), 1–13 (2014).
    • 24. Maliehe M, Ntoi MA, Lahiri S et al. Environmental factors that contribute to the maintenance of Cryptococcus neoformans pathogenesis. Microorganisms 8(2), 1–19 (2020).
    • 25. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol. Microbiol. 114(5), 721–734 (2020).
    • 26. BrCAST – Brazilian Committee on Antimicrobial Susceptibility Testing. https://brcast.org.br
    • 27. CyQUANT XTT Cell Viability Assay. https://www.thermofisher.com/order/catalog/product/X12223?ef_id=Cj0KCQjwrMKmBhCJARIsAHuEAPSbP0d4wdhp7kuEi0Fu-xM-DYOS9tNoIOFaFLSVaoHNtDzOFuOjsdYaAnEbEALw_wcB:G:s&s_kwcid=AL!3652!3!585656104074!e!!g!!xtt%20viability%20assay!2031782395!114240973391&cid=bid_pca_iva_r01_co_cp1359_pjt0000_bid00000_0se_gaw_nt_pur_con&gclid=Cj0KCQjwrMKmBhCJARIsAHuEAPSbP0d4wdhp7kuEi0Fu-xM-DYOS9tNoIOFaFLSVaoHNtDzOFuOjsdYaAnEbEALw_wcB#/X12223
    • 28. Almeida-Paes R, de Andrade IB, Ramos MLM et al. Medicines for malaria venture COVID box: A source for repurposing drugs with antifungal activity against human pathogenic fungi. Mem. Inst. Oswaldo Cruz 116(1), 1–10 (2021).
    • 29. ImageJ. https://imagej.nih.gov/ij/
    • 30. de S Araújo GR, Alves V, Martins-de-Souza PH et al. Dexamethasone and methylprednisolone promote cell proliferation, capsule enlargement, and in vivo dissemination of C. neoformans. Front. Fungal Biol. 2(February), 1–13 (2021). • Illustrates the effects of other immunosuppressants on C. neoformans.
    • 31. Casadevall A, Cleare W, Feldmesser M et al. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob. Agents Chemother. 42(6), 1437–1446 (1998).
    • 32. Ramos LS, Oliveira SSC, Silva LN et al. Surface, adhesiveness and virulence aspects of Candida haemulonii species complex. Med. Mycol. 58(7), 973–986 (2020).
    • 33. Frases S, Pontes B, Nimrichter L, Viana NB, Rodrigues ML, Casadevall A. Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules. Proc. Natl Acad. Sci. USA 106(4), 1228–1233 (2009).
    • 34. de S Araújo GR, Viana NB, Pontes B, Frases S. Rheological properties of cryptococcal polysaccharide change with fiber size, antibody binding and temperature. Future Microbiol. 14(10), 867–884 (2019).
    • 35. Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia: Journal of Medical and Veterinary Mycology 20(1), 7–14 (1982).
    • 36. Ramos LS, Figueiredo-Carvalho MHG, Silva LN et al. The threat called Candida haemulonii species complex in Rio de Janeiro State, Brazil: focus on antifungal resistance and virulence attributes. J. Fungi 8(6), 574 (2022).
    • 37. Rüchel R, Tegeler R, Trost M. A comparison of secretory proteinases from different strains of Candida albicans. Sabouraudia 20(3), 233–244 (1982).
    • 38. Aktaz E, Yigit N, Ayyildiz A. Esterase activity in various Candida species. J. Int. Med. Res. 30(3), 322–324 (2002).
    • 39. Tsang PWK. Differential phytate utilization in Candida species. Mycopathologia 172(6), 473–480 (2011).
    • 40. Luo G, Samaranayake LP, Yau JYY. Candida species exhibit differential in vitro hemolytic activities. J. Clin. Microbiol. 39(8), 2971–2974 (2001).
    • 41. García-Martos P, Domínguez I, Marín P, García-Agudo R, Aoufi S, Maria J. Antifungal susceptibility of emerging yeast pathogens. Enferm. Infecc. Microbiol. Clin. 19(6), 249–256 (2001).
    • 42. Christensen WB. Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bacteriol. 52(4), 461–466 (1946).
    • 43. Almeida-Paes R, de Oliveira LC, Oliveira MME, Gutierrez-Galhardo MC, Nosanchuk JD, Zancopé-Oliveira RM. Phenotypic characteristics associated with virulence of clinical isolates from the Sporothrix complex. Biomed Res. Int. 2015, DOI: 10.1155/2015/212308 (2015).
    • 44. Mu W, Rezek V, Martin H et al. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI insight 7(22), e159136 (2022).
    • 45. Gow NAR, Latge J-P, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5(3), 1–25 (2017).
    • 46. Graef M. Lipid droplet-mediated lipid and protein homeostasis in budding yeast. FEBS Lett. 592(8), 1291–1303 (2018).
    • 47. Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48(6), 365–377 (2005).
    • 48. Lamming DW. Inhibition of the mechanistic target of rapamycin (mTOR)-rapamycin and beyond. Cold Spring Harb. Perspect. Med. 6(5), 1–14 (2016).
    • 49. O'Shea AE, Valdera FA, Ensley D et al. Immunologic and dose dependent effects of rapamycin and its evolving role in chemoprevention. Clin. Immunol. 245, DOI: 10.1016/j.clim.2022.109095 (2022).
    • 50. Sehgal SN, Baker H, Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. (Tokyo). 28(10), 727–732 (1975).
    • 51. Bastidas RJ, Shertz CA, Lee SC, Heitman J, Cardenas ME. Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of TOR. Eukaryot. Cell 11(3), 270–281 (2012).
    • 52. Choi SJN, You HS, Chung SY. Rapamycin-induced cytotoxic signal transduction pathway. Transplant. Proc. 40(8), 2737–2739 (2008).
    • 53. McFadden D, Zaragoza O, Casadevall A. The capsular dynamics of Cryptococcus neoformans. Trends Microbiol. 14(11), 497–505 (2006).
    • 54. Bulmer GS, Sans MD, Gunn CM. Cryptococcus neoformans. I. Nonencapsulated mutants. J. Bacteriol. 94(5), 1475–1479 (1967).
    • 55. de Andrade IB, Corr D, Alves V et al. Cyclosporine affects the main virulence factors of Cryptococcus neoformans in vitro. J. Fungi 9(4), 487 (2023).
    • 56. Zaragoza O. Multiple disguises for the same party: the concepts of morphogenesis and phenotypic variations in Cryptococcus neoformans. Front. Microbiol. 2(SEP), 1–9 (2011).
    • 57. Zaragoza O, Nielsen K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr. Opin. Microbiol. 16(4), 409–413 (2013).
    • 58. Upadhya R, Baker LG, Lam WC, Specht CA, Donlin MJ, Lodge JK. Cryptococcus neoformans CDA1 and its chitin deacetylase activity are required for fungal pathogenesis. MBio 9(6), e02087–18 (2018).
    • 59. Breuer MR, Dasgupta A, Vasselli JG, Lin X, Shaw BD, Sachs MS. The antidepressant sertraline induces the formation of supersized lipid droplets in the human pathogen Cryptococcus neoformans. J. fungi (Basel, Switzerland) 8(6), 1–12 (2022).
    • 60. Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 68(2), 443–448 (2000).
    • 61. Olszewski MA, Noverr MC, Chen GH et al. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am. J. Pathol. 164(5), 1761–1771 (2004).
    • 62. Shi M, Li SS, Zheng C et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J. Clin. Invest. 120(5), 1683–1693 (2010).
    • 63. Singh A, Panting RJ, Varma A et al. Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans. MBio 4(3), e00220–13 (2013).
    • 64. Shi M, Calaruso P, Mody CH. Real-time in vivo imaging of fungal migration to the central nervous system. Cell. Microbiol. 14(12), 1819–1827 (2012).
    • 65. Osterholzer JJ, Surana R, Milam JE et al. Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. Am. J. Pathol. 174(3), 932–943 (2009).
    • 66. Zaragoza O, Rodrigues ML, de Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv. Appl. Microbiol. 68, 133–216 (2009).
    • 67. McFadden DC, Fries BC, Wang F, Casadevall A. Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot. Cell 6(8), 1464–1473 (2007).
    • 68. Chatterjee A, Mukhopadhyay S, Tung K, Patel D, Foster DA. Rapamycin-induced G1 cell cycle arrest employs both TGF-β and Rb pathways. Physiol. Behav. 360(2), 134–140 (2015).