We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Role of lysosomes in HSV-induced pathogenesis

    Jieqiong Ding

    Department of Physiology, School of Basic Medical Sciences, Hubei University of Science & Technology, Xianning, 437100, China

    &
    Liqiong Ding

    *Author for correspondence:

    E-mail Address: dinglq2021@163.com

    Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, 437100, China

    Published Online:https://doi.org/10.2217/fmb-2023-0090

    HSV can evade host defenses and cause lifelong infection and severe illness. Lysosomes are catabolic organelles that play an important role in the regulation of cellular homeostasis. Lysosomal dysfunction and alterations in the process of autophagy have been identified in a variety of diseases, including HSV infection, and targeting lysosomes is a potential anti-HSV therapeutic strategy. This article reviews the role of lysosomes and lysosome-associated proteins in HSV infection, providing attractive targets and novel strategies for the treatment of HSV infection.

    Tweetable abstract

    Lysosomes play an important role in the regulation of cellular homeostasis, and targeting lysosomes is a potential anti-HSV therapeutic strategy. This article takes a look at the role of lysosomes and lysosome-associated proteins in HSV infection.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10(9), 623–635 (2009).
    • 2. Dunn WA Jr. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 4(4), 139–143 (1994).
    • 3. Ryter SW, Cloonan SM, Choi AM. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36(1), 7–16 (2013).
    • 4. Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106(2), 157–169 (2001).
    • 5. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14(5), 283–296 (2013).
    • 6. Gros F, Muller S. The role of lysosomes in metabolic and autoimmune diseases. Nat. Rev. Nephrol. 19(6), 366–383 (2023).
    • 7. Nicola AV, Aguilar HC, Mercer J, Ryckman B, Wiethoff CM. Virus entry by endocytosis. Adv. Virol. 2013, 469538 (2013).
    • 8. Nicola AV. Herpesvirus entry into host cells mediated by endosomal low pH. Traffic 17(9), 965–975 (2016).
    • 9. Nicola AV, Straus SE. Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J. Virol. 78(14), 7508–7517 (2004).
    • 10. Nicola AV, McEvoy AM, Straus SE. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J. Virol. 77(9), 5324–5332 (2003).
    • 11. Katze MG, He Y, Gale M Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2(9), 675–687 (2002).
    • 12. Ma Z, Bai J, Jiang C et al. Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy. Autophagy doi: 10.1080/15548627.2022.2139921 (2022) (Epub ahead of print). • UL21 triggers degradation of cyclic GMP-AMP synthase through the lysosomal pathway, thereby inhibiting type I interferon (IFN) signaling.
    • 13. Zhang R, Xu A, Qin C et al. Pseudorabies virus dUTPase UL50 induces lysosomal degradation of type I interferon receptor 1 and antagonizes the alpha interferon response. J. Virol. 91(21), e01148–17 (2017). • UL50 inhibits type I IFN signaling by promoting lysosomal degradation ofIFNAR1, thereby encouraging immune evasion.
    • 14. Shembade N, Harhaj NS, Parvatiyar K et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat. Immunol. 9(3), 254–262 (2008).
    • 15. Perry WL, Hustad CM, Swing DA, O'Sullivan TN, Jenkins NA, Copeland NG. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat. Genet. 18(2), 143–146 (1998).
    • 16. Ushijima Y, Luo C, Kamakura M, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus UL56 interacts with and regulates the Nedd4-family ubiquitin ligase Itch. J. Virol. 7, 179 (2010). • UL56 induces degradation of Itch via lysosomes.
    • 17. Ushijima Y, Goshima F, Kimura H, Nishiyama Y. Herpes simplex virus type 2 tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions. Virol. J. 6, 168 (2009).
    • 18. Blondeau C, Pelchen-Matthews A, Mlcochova P, Marsh M, Milne RS, Towers GJ. Tetherin restricts herpes simplex virus 1 and is antagonized by glycoprotein M. Virol. J. 87(24), 13124–13133 (2013).
    • 19. Liu Y, Li M, Zhang D, Zhang M, Hu Q. HSV-2 glycoprotein gD targets the CC domain of tetherin and promotes tetherin degradation via lysosomal pathway. Virol. J. 13(1), 154 (2016). • Glycoprotein D targets the CC domain of tetherin, inducing its degradation by encouraging tetherin to enter lysosomes.
    • 20. Peri P, Nuutila K, Vuorinen T, Saukko P, Hukkanen V. Cathepsins are involved in virus-induced cell death in ICP4 and Us3 deletion mutant herpes simplex virus type 1-infected monocytic cells. J. Gen. Virol. 92(Pt 1), 173–180 (2011).
    • 21. Marino-Merlo F, Papaianni E, Medici MA et al. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis. Cell Death Dis. 7(9), e2354 (2016).
    • 22. Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119(2), 301–311 (1992).
    • 23. McFarlane S, Aitken J, Sutherland JS, Nicholl MJ, Preston VG, Preston CM. Early induction of autophagy in human fibroblasts after infection with human cytomegalovirus or herpes simplex virus 1. J. Virol. 85(9), 4212–4221 (2011).
    • 24. O'Connell D, Liang C. Autophagy interaction with herpes simplex virus type-1 infection. Autophagy 12(3), 451–459 (2016).
    • 25. Orvedahl A, Alexander D, Talloczy Z et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1(1), 23–35 (2007).
    • 26. Lussignol M, Queval C, Bernet-Camard MF et al. The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR. J. Virol. 87(2), 859–871 (2013).
    • 27. Turan A, Grosche L, Krawczyk A et al. Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. J. Cell Biol. 218(2), 508–523 (2019).
    • 28. Schwake M, Schroder B, Saftig P. Lysosomal membrane proteins and their central role in physiology. Traffic 14(7), 739–748 (2013).
    • 29. Xu B, Gao Y, Zhan S, Ge W. Quantitative proteomic profiling for clarification of the crucial roles of lysosomes in microbial infections. Mol. Immunol. 87, 122–131 (2017).
    • 30. Kundra R, Kornfeld S. Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J. Biol. Chem. 274(43), 31039–31046 (1999).
    • 31. Terasawa K, Tomabechi Y, Ikeda M et al. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes. Biochem. Biophys. Res. Commun. 479(3), 489–495 (2016).
    • 32. Perales-Linares R, Navas-Martin S. Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology 140(2), 153–167 (2013).
    • 33. Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-DąBrowska L et al. Participation of endosomes in toll-like receptor 3 transportation pathway in murine astrocytes. Front. Cell. Neurosci. 14, 544612 (2020).
    • 34. Chi C, Leonard A, Knight WE et al. LAMP-2B regulates human cardiomyocyte function by mediating autophagosome-lysosome fusion. Proc. Natl Acad. Sci. USA 116(2), 556–565 (2019).
    • 35. Kristen H, Sastre I, Munoz-Galdeano T, Recuero M, Aldudo J, Bullido MJ. The lysosome system is severely impaired in a cellular model of neurodegeneration induced by HSV-1 and oxidative stress. Neurobiol. Aging 68, 5–17 (2018).
    • 36. Kristen H, Sastre I, Aljama S et al. LAMP2 deficiency attenuates the neurodegeneration markers induced by HSV-1 infection. Neurochem. Int. 146, 105032 (2021). • LAMP2 deletion results in a significant reduction in HSV replication and infectious particle formation.
    • 37. Kobayashi T, Vischer UM, Rosnoblet C et al. The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in human endothelial cells. Mol. Biol. Cell 11(5), 1829–1843 (2000).
    • 38. Lee Y, Dizzell SE, Leung V et al. Effects of female sex hormones on susceptibility to HSV-2 in vaginal cells grown in air–liquid interface. Viruses 8(9), 241 (2016).
    • 39. Nazli A, Chow R, Zahoor MA et al. LAMP3/CD63 expression in early and late endosomes in human vaginal epithelial cells is associated with enhancement of HSV-2 infection. J. Virol. 96(23), e0155322 (2022).
    • 40. Balaji K, French CT, Miller JF, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic 15(11), 1206–1218 (2014).
    • 41. Zheng K, Xiang Y, Wang X et al. Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio 5(1), e00958–13 (2014).
    • 42. Alwan HAJ, van Zoelen EJJ, van Leeuwen JEM. Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J. Biol. Chem. 278(37), 35781–35790 (2003).
    • 43. Shen CH, Chou CC, Lai TY et al. ZNRF1 mediates epidermal growth factor receptor ubiquitination to control receptor lysosomal trafficking and degradation. Front. Cell Dev. Biol. 9, 642625 (2021).