We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Infection control measures against multidrug-resistant Gram-negative bacteria in children and neonates

    Theodoros Karampatakis

    *Author for correspondence:

    E-mail Address: tkarampatakis@yahoo.com

    Microbiology Department, Papanikolaou General Hospital, Thessaloniki, 570 10, Greece

    ,
    Katerina Tsergouli

    Microbiology Department, Agios Pavlos General Hospital, Thessaloniki, 551 34, Greece

    &
    Emmanuel Roilides

    Infectious Disease Unit, 3rd Department of Pediatrics, School of Health Sciences, Hippokration General Hospital, Thessaloniki, 546 42, Greece

    Published Online:https://doi.org/10.2217/fmb-2023-0072

    The increase in infections caused by multidrug-resistant (MDR) Gram-negative bacteria in neonatal and pediatric intensive care units over recent years is alarming. MDR Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii have constituted the main causes of the MDR Gram-negative bacteria problem. The implementation of infection control measures such as hand hygiene, cohorting of patients, contact precautions, active surveillance and environmental cleaning could diminish their spread. Recently, water safety has been identified as a major component of infection control policies. The aim of the current review is to highlight the effectiveness of these infection control measures in managing outbreaks caused by MDR Gram-negative bacteria in neonatal and pediatric intensive care units and highlight future perspectives on the topic.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Magiorakos AP, Srinivasan A, Carey RB et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3), 268–281 (2012). •• A significant manuscript providing the initial definitions of multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria.
    • 2. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17(10), 1791–1798 (2011). • An important review highlighting the worldwide problem of carbapenemase-producing Enterobacteriaceae.
    • 3. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J. Antimicrob. Chemother. 60(5), 913–920 (2007).
    • 4. Sader HS, Flamm RK, Carvalhaes CG, Castanheira M. Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against Gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn. Microbiol. Infect. Dis. 96(3), 114833 (2020).
    • 5. Giske CG, Monnet DL, Cars O, Carmeli Y. ReAct-Action on Antibiotic R. Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob. Agents Chemother. 52(3), 813–821 (2008).
    • 6. Tacconelli E, Buhl M, Humphreys H et al. Analysis of the challenges in implementing guidelines to prevent the spread of multidrug-resistant Gram-negatives in Europe. BMJ Open 9(5), e027683 (2019). •• A very important study investigating major differences among European countries in implementing infection prevention and control measures and reasons for reduced compliance.
    • 7. Magiorakos AP, Burns K, Rodriguez Bano J et al. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: guidance from the European Centre for Disease Prevention and Control. Antimicrob. Resist. Infect. Control. 6, 113 (2017).
    • 8. Tacconelli E, Cataldo MA, Dancer SJ et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 20(Suppl. 1), 1–55 (2014).
    • 9. Dulyayangkul P, Douglas EJA, Lastovka F, Avison MB. Resistance to ceftazidime/avibactam plus meropenem/vaborbactam when both are used together achieved in four steps from metallo-beta-lactamase negative Klebsiella pneumoniae. Antimicrob. Agents Chemother. 64(10), e00409–e00420 (2020).
    • 10. Zaky A, Zeliadt SB, Treggiari MM. Patient-level interventions to prevent the acquisition of resistant Gram-negative bacteria in critically ill patients: a systematic review. Anaesth. Intensive Care 43(1), 23–33 (2015).
    • 11. Karampatakis T, Tsergouli K, Iosifidis E et al. Effects of an active surveillance program and enhanced infection control measures on carbapenem-resistant Gram-negative bacterial carriage and infections in pediatric intensive care. Microb. Drug Resist. 25(9), 1347–1356 (2019). • An interesting study underlining the effects of infection control measures and active surveillance on the incidence of multidrug-resistant Gram-negative bacteria in pediatric patients hospitalized in the intensive care unit.
    • 12. Saleem AF, Qamar FN, Shahzad H, Qadir M, Zaidi AK. Trends in antibiotic susceptibility and incidence of late-onset Klebsiella pneumoniae neonatal sepsis over a six-year period in a neonatal intensive care unit in Karachi, Pakistan. Int. J. Infect. Dis. 17(11), e961–965 (2013).
    • 13. Shah PS, Yoon W, Kalapesi Z, Bassil K, Dunn M, Lee SK. Seasonal variations in healthcare-associated infection in neonates in Canada. Arch. Dis. Child. Fetal Neonatal Ed. 98(1), F65–F69 (2013).
    • 14. Hartel C, Faust K, Fortmann I et al. Sepsis related mortality of extremely low gestational age newborns after the introduction of colonization screening for multi-drug resistant organisms. Antimicrob. Resist. Infect. Control. 9(1), 144 (2020).
    • 15. Arena F, Giani T, Becucci E et al. Large oligoclonal outbreak due to Klebsiella pneumoniae ST14 and ST26 producing the FOX-7 AmpC beta-lactamase in a neonatal intensive care unit. J. Clin. Microbiol. 51(12), 4067–4072 (2013).
    • 16. Velasco C, Rodriguez-Bano J, Garcia L et al. Eradication of an extensive outbreak in a neonatal unit caused by two sequential Klebsiella pneumoniae clones harbouring related plasmids encoding an extended-spectrum beta-lactamase. J. Hosp. Infect. 73(2), 157–163 (2009).
    • 17. Yang Y, Liu J, Muhammad M et al. Factors behind the prevalence of carbapenem-resistant Klebsiella pneumoniae in pediatric wards. Medicine (Baltimore) 100(36), e27186 (2021).
    • 18. Wang J, Lv Y, Yang W, Zhao P, Yin C. Epidemiology and clinical characteristics of infection/colonization due to carbapenemase-producing Enterobacterales in neonatal patients. BMC Microbiol. 22(1), 177 (2022).
    • 19. Ahmad N, Khalid S, Ali SM, Khan AU. Occurrence of bla(NDM) variants among Enterobacteriaceae from a neonatal intensive care unit in a Northern India hospital. Front. Microbiol. 9, 407 (2018).
    • 20. Al-Obeid S, Bremont S, Jabri L, Massoudi N, Haddad Q. Klebsiella pneumoniae LO10 producing extended-spectrum beta-lactamase SHV-12 in Saudi Arabia. J. Chemother. 20(6), 709–713 (2008).
    • 21. Anderson B, Nicholas S, Sprague B, Campos J, Short B, Singh N. Molecular and descriptive epidemiology of multidrug-resistant Enterobacteriaceae in hospitalized infants. Infect. Control Hosp. Epidemiol. 29(3), 250–255 (2008).
    • 22. Mammina C, Di Carlo P, Cipolla D et al. Surveillance of multidrug-resistant Gram-negative bacilli in a neonatal intensive care unit: prominent role of cross transmission. Am. J. Infect. Control 35(4), 222–230 (2007).
    • 23. Mustafa ZU, Khan AH, Harun SN, Salman M, Godman B. Antibiotic overprescribing among neonates and children hospitalized with COVID-19 in Pakistan and the implications. Antibiotics (Basel) 12(4), 646 (2023).
    • 24. Chowdhury K, Haque M, Nusrat N et al. Management of children admitted to hospitals across Bangladesh with suspected or confirmed COVID-19 and the implications for the future: a nationwide cross-sectional study. Antibiotics (Basel) 11(1), 105 (2022).
    • 25. Anderson DJ, Jenkins TC, Evans SR et al. The role of stewardship in addressing antibacterial resistance: Stewardship and Infection Control Committee of the Antibacterial Resistance Leadership Group. Clin. Infect. Dis. 64(Suppl. 1), S36–S40 (2017).
    • 26. Almeida TL, Mendo T, Costa R et al. Carbapenemase-producing Enterobacteriaceae (CPE) newborn colonization in a Portuguese neonatal intensive care unit (NICU): epidemiology and infection prevention and control measures. Infect. Dis. Rep. 13(2), 411–417 (2021).
    • 27. Lohr IH, Rettedal S, Natas OB, Naseer U, Oymar K, Sundsfjord A. Long-term faecal carriage in infants and intra-household transmission of CTX-M-15-producing Klebsiella pneumoniae following a nosocomial outbreak. J. Antimicrob. Chemother. 68(5), 1043–1048 (2013).
    • 28. Akturk H, Sutcu M, Somer A et al. Carbapenem-resistant Klebsiella pneumoniae colonization in pediatric and neonatal intensive care units: risk factors for progression to infection. Braz. J. Infect. Dis. 20(2), 134–140 (2016).
    • 29. Laux R, Wirtz S, Huggett S, Ilchmann C. [Relevance of parents as source for contamination of neonates with multiresistant Gram-negative pathogens (MRGN)]. Z. Geburtshilfe Neonatol. 217(2), 61–64 (2013).
    • 30. Zhu Z, Wang X, Chen W et al. The efficacy of kangaroo-mother care to the clinical outcomes of LBW and premature infants in the first 28 days: a meta-analysis of randomized clinical trials. Front. Pediatr. 11, 1067183 (2023).
    • 31. Saporito L, Graziano G, Mescolo F et al. Efficacy of a coordinated strategy for containment of multidrug-resistant Gram-negative bacteria carriage in a neonatal intensive care unit in the context of an active surveillance program. Antimicrob. Resist. Infect. Control. 10(1), 30 (2021).
    • 32. Song X, Soghier L, Floyd TT, Harris TR, Short BL, DeBiasi RL. Reassessing the need for active surveillance of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the neonatal intensive care population. Infect. Control Hosp. Epidemiol. 39(12), 1436–1441 (2018).
    • 33. Cantey JB, Sreeramoju P, Jaleel M et al. Prompt control of an outbreak caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. J. Pediatr. 163(3), 672–679 (2013).
    • 34. Patry C, Schindler M, Reinhard J et al. A gap between need and reality: neonatal nursing staff requirements on a German intensive care unit. Pediatr. Rep. 6(1), 5186 (2014).
    • 35. Gupta A. Hospital-acquired infections in the neonatal intensive care unit–Klebsiella pneumoniae. Semin. Perinatol. 26(5), 340–345 (2002).
    • 36. Balachander B, Rajesh D, Pinhero CL, Paul S, Stevens S, Rao S. Response measures to infection outbreaks during the second year of sustenance phase of infection control quality improvement. Indian J. Pediatr. 87(5), 333–338 (2020).
    • 37. Longardt AC, Piening B, von Weizsacker K, Dame C, Buhrer C, Garten L. Screening for third-generation cephalosporin-resistant bacteria reduces the incidence on late-onset sepsis and antibiotic use in neonates. Klin Padiatr. 232(4), 203–209 (2020).
    • 38. Herruzo R, Ruiz G, Perez-Blanco V et al. Bla-OXA48 gene microorganisms outbreak, in a tertiary children's hospital, over 3 years (2012–2014): case report. Medicine (Baltimore) 96(40), e7665 (2017).
    • 39. Hussain AS, Ahmed AM, Arbab S et al. CLABSI reduction using evidence based interventions and nurse empowerment: a quality improvement initiative from a tertiary care NICU in Pakistan. Arch. Dis. Child. 106(4), 394–400 (2021).
    • 40. Seesahai J, Church PT, Asztalos E, Eng-Chong M, Arbus J, Banihani R. Neonates with maternal colonization of carbapenemase-producing, carbapenem-resistant Enterobacteriaceae: a mini-review and a suggested guide for preventing neonatal infection. Children (Basel) 8(5), 399 (2021).
    • 41. Tracy M, Ryan L, Samarasekara H, Leroi M, Polkinghorne A, Branley J. Removal of sinks and bathing changes to control multidrug-resistant Gram-negative bacteria in a neonatal intensive care unit: a retrospective investigation. J. Hosp. Infect. 104(4), 508–510 (2020).
    • 42. Zhou J, Li G, Ma X, Yang Q, Yi J. Outbreak of colonization by carbapenemase-producing Klebsiella pneumoniae in a neonatal intensive care unit: investigation, control measures and assessment. Am. J. Infect. Control 43(10), 1122–1124 (2015).
    • 43. Artelt T, Kaase M, Bley I et al. Transmission risk on a neonatal intensive care unit: Escherichia coli versus Klebsiella pneumoniae. Can. J. Infect. Dis. Med. Microbiol. 2018, 1525072 (2018).
    • 44. Filozov A, Visintainer P, Carbonaro C, Aguero-Rosenfeld M, Wormser GP, Montecalvo MA. Epidemiology of an outbreak of antibiotic-resistant Klebsiella pneumoniae at a tertiary care medical center. Am. J. Infect. Control 37(9), 723–728 (2009).
    • 45. Benenson S, Levin PD, Block C et al. Continuous surveillance to reduce extended-spectrum beta-lactamase Klebsiella pneumoniae colonization in the neonatal intensive care unit. Neonatology 103(2), 155–160 (2013).
    • 46. Giuffre M, Bonura C, Geraci DM et al. Successful control of an outbreak of colonization by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae sequence type 258 in a neonatal intensive care unit, Italy. J. Hosp. Infect. 85(3), 233–236 (2013).
    • 47. Mavroidi A, Liakopoulos A, Gounaris A et al. Successful control of a neonatal outbreak caused mainly by ST20 multidrug-resistant SHV-5-producing Klebsiella pneumoniae, Greece. BMC Pediatr. 14, 105 (2014).
    • 48. Priante E, Minotti C, Contessa C et al. Successful control of an outbreak by phenotypically identified extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. Antibiotics (Basel) 11(11), 1649 (2022).
    • 49. Vergadi E, Bitsori M, Maraki S, Galanakis E. Community-onset carbapenem-resistant Klebsiella pneumoniae urinary tract infections in infancy following NICU hospitalisation. J. Pediatr. Urol. 13(5), 495e491–495e496 (2017).
    • 50. Pan F, Tian D, Wang B et al. Fecal carriage and molecular epidemiology of carbapenem-resistant Enterobacteriaceae from outpatient children in Shanghai. BMC Infect. Dis. 19(1), 678 (2019).
    • 51. Younge N, Goldstein RF, Bann CM et al. Survival and neurodevelopmental outcomes among periviable infants. N. Engl. J. Med. 376(7), 617–628 (2017).
    • 52. Leigh L, Stoll BJ, Rahman M, McGowan J Jr. Pseudomonas aeruginosa infection in very low birth weight infants: a case-control study. Pediatr. Infect. Dis. J. 14(5), 367–371 (1995).
    • 53. Ciofi Degli Atti M, Bernaschi P, Carletti M et al. An outbreak of extremely drug-resistant Pseudomonas aeruginosa in a tertiary care pediatric hospital in Italy. BMC Infect. Dis. 14, 494 (2014).
    • 54. Grundmann H, Kropec A, Hartung D, Berner R, Daschner F. Pseudomonas aeruginosa in a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen. J. Infect. Dis. 168(4), 943–947 (1993).
    • 55. Toltzis P, Dul M, O'Riordan MA, Melnick D, Lo M, Blumer J. Meropenem use and colonization by antibiotic-resistant Gram-negative bacilli in a pediatric intensive care unit. Pediatr. Crit. Care Med. 10(1), 49–54 (2009).
    • 56. Lutsar I, Chazallon C, Trafojer U et al. Meropenem vs standard of care for treatment of neonatal late onset sepsis (NeoMero1): a randomised controlled trial. PLOS ONE 15(3), e0229380 (2020).
    • 57. Xu W, He L, Liu C et al. The effect of infection control nurses on the occurrence of Pseudomonas aeruginosa healthcare-acquired infection and multidrug-resistant strains in critically-ill children. PLOS ONE 10(12), e0143692 (2015).
    • 58. Cardoso O, Alves AF, Leitao R. Metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa isolates from a cystic fibrosis patient. Int. J. Antimicrob. Agents 31(4), 375–379 (2008).
    • 59. AbdulWahab A, Zahraldin K, Sid Ahmed MA et al. The emergence of multidrug-resistant Pseudomonas aeruginosa in cystic fibrosis patients on inhaled antibiotics. Lung India 34(6), 527–531 (2017).
    • 60. Cohen-Cymberknoh M, Gilead N, Gartner S et al. Eradication failure of newly acquired Pseudomonas aeruginosa isolates in cystic fibrosis. J. Cyst. Fibros. 15(6), 776–782 (2016).
    • 61. Smyth AR, Smith SJ, Rowbotham NJ. Infection prevention and control in cystic fibrosis: one size fits all the argument against. Paediat. Respir. Rev. 36, 94–96 (2020).
    • 62. Zuckerman JB, Zuaro DE, Prato BS et al. Bacterial contamination of cystic fibrosis clinics. J. Cyst. Fibros. 8(3), 186–192 (2009).
    • 63. Wood ME, Stockwell RE, Johnson GR et al. Face masks and cough etiquette reduce the cough aerosol concentration of Pseudomonas aeruginosa in people with cystic fibrosis. Am. J. Respir. Crit. Care Med. 197(3), 348–355 (2018).
    • 64. Waters V, Ratjen F. Multidrug-resistant organisms in cystic fibrosis: management and infection-control issues. Expert Rev. Anti Infect Ther. 4(5), 807–819 (2006).
    • 65. Bosshammer J, Fiedler B, Gudowius P, von der Hardt H, Romling U, Tummler B. Comparative hygienic surveillance of contamination with pseudomonads in a cystic fibrosis ward over a 4-year period. J. Hosp. Infect. 31(4), 261–274 (1995).
    • 66. Doring G, Jansen S, Noll H et al. Distribution and transmission of Pseudomonas aeruginosa and Burkholderia cepacia in a hospital ward. Pediatr. Pulmonol. 21(2), 90–100 (1996).
    • 67. Celik IH, Demirel G, Tatar Aksoy H et al. [Acinetobacter baumannii: an important pathogen with multidrug resistance in newborns]. Mikrobiyol. Bul. 45(4), 716–722 (2011).
    • 68. Chan PC, Huang LM, Lin HC et al. Control of an outbreak of pandrug-resistant Acinetobacter baumannii colonization and infection in a neonatal intensive care unit. Infect. Control Hosp. Epidemiol. 28(4), 423–429 (2007).
    • 69. Gajic I, Jovicevic M, Milic M et al. Clinical and molecular characteristics of OXA-72-producing Acinetobacter baumannii ST636 outbreak at a neonatal intensive care unit in Serbia. J. Hosp. Infect. 112, 54–60 (2021).
    • 70. Tsiatsiou O, Iosifidis E, Katragkou A et al. Successful management of an outbreak due to carbapenem-resistant Acinetobacter baumannii in a neonatal intensive care unit. Eur. J. Pediatr. 174(1), 65–74 (2015).
    • 71. Touati A, Achour W, Cherif A et al. Outbreak of Acinetobacter baumannii in a neonatal intensive care unit: antimicrobial susceptibility and genotyping analysis. Ann. Epidemiol. 19(6), 372–378 (2009).
    • 72. Maciel WG, da Silva KE, Croda J et al. Clonal spread of carbapenem-resistant Acinetobacter baumannii in a neonatal intensive care unit. J. Hosp. Infect. 98(3), 300–304 (2018).
    • 73. Simmonds A, Munoz J, Aguero-Rosenfeld M et al. Outbreak of Acinetobacter infection in extremely low birth weight neonates. Pediatr. Infect. Dis. J. 28(3), 210–214 (2009).
    • 74. Thatrimontrichai A, Pannaraj PS, Janjindamai W, Dissaneevate S, Maneenil G, Apisarnthanarak A. Intervention to reduce carbapenem-resistant Acinetobacter baumannii in a neonatal intensive care unit. Infect. Control Hosp. Epidemiol. 41(6), 710–715 (2020).
    • 75. Zarrilli R, Di Popolo A, Bagattini M et al. Clonal spread and patient risk factors for acquisition of extensively drug-resistant Acinetobacter baumannii in a neonatal intensive care unit in Italy. J. Hosp. Infect. 82(4), 260–265 (2012).
    • 76. Dramowski A, Aucamp M, Bekker A, Mehtar S. Infectious disease exposures and outbreaks at a South African neonatal unit with review of neonatal outbreak epidemiology in Africa. Int. J. Infect. Dis. 57, 79–85 (2017).
    • 77. Pillay T, Pillay DG, Adhikari M, Pillay A, Sturm AW. An outbreak of neonatal infection with Acinetobacter linked to contaminated suction catheters. J. Hosp. Infect. 43(4), 299–304 (1999).
    • 78. Jeena P, Thompson E, Nchabeleng M, Sturm A. Emergence of multi-drug-resistant Acinetobacter anitratus species in neonatal and paediatric intensive care units in a developing country: concern about antimicrobial policies. Ann. Trop. Paediatr. 21(3), 245–251 (2001).
    • 79. McGrath EJ, Chopra T, Abdel-Haq N et al. An outbreak of carbapenem-resistant Acinetobacter baumannii infection in a neonatal intensive care unit: investigation and control. Infect. Control Hosp. Epidemiol. 32(1), 34–41 (2011).
    • 80. Melamed R, Greenberg D, Porat N et al. Successful control of an Acinetobacter baumannii outbreak in a neonatal intensive care unit. J. Hosp. Infect. 53(1), 31–38 (2003).
    • 81. Gramatniece A, Silamikelis I, Zahare I et al. Control of Acinetobacter baumannii outbreak in the neonatal intensive care unit in Latvia: whole-genome sequencing powered investigation and closure of the ward. Antimicrob. Resist. Infect. Control. 8, 84 (2019).
    • 82. Kim D, Lee H, Choi JS et al. The changes in epidemiology of imipenem-resistant Acinetobacter baumannii bacteremia in a pediatric intensive care unit for 17 years. J. Korean Med. Sci. 37(24), e196 (2022).
    • 83. Tawney A, Semproch L, Lephart P et al. Impact of contact isolation precautions on multi-drug resistant Acinetobacter baumannii in the pediatric intensive care unit. Infect. Control Hosp. Epidemiol. 36(9), 1108–1110 (2015).
    • 84. Hong KB, Oh HS, Song JS et al. Investigation and control of an outbreak of imipenem-resistant Acinetobacter baumannii infection in a pediatric intensive care unit. Pediatr. Infect. Dis. J. 31(7), 685–690 (2012).
    • 85. Sreenath K, Batra P, Vinayaraj EV et al. Coinfections with other respiratory pathogens among patients with COVID-19. Microbiol. Spectr. 9(1), e0016321 (2021).
    • 86. Cai XF, Sun JM, Bao LS, Li WB. Risk factors and antibiotic resistance of pneumonia caused by multidrug resistant Acinetobacter baumannii in pediatric intensive care unit. World J. Emerg. Med. 3(3), 202–207 (2012).
    • 87. Katragkou A, Kotsiou M, Antachopoulos C et al. Acquisition of imipenem-resistant Acinetobacter baumannii in a pediatric intensive care unit: a case-control study. Intensive Care Med. 32(9), 1384–1391 (2006).
    • 88. Kim B, Kim K. Nosocomial Acinetobacter baumannii infection in children in adult versus pediatric intensive care units. Pediatr. Int. 62(4), 451–458 (2020).
    • 89. Ağin H, Ayhan FY, Gülay Z et al. The evaluation of clusters of hospital infections due to multidrug-resistant Salmonella enterica serovar typhimurium in the neonatal unit: a two-year experience. Turk. J. Pediatr. 53(5), 517–521 (2011).
    • 90. Mahajan R, Mathur M, Kumar A, Gupta P, Faridi MM, Talwar V. Nosocomial outbreak of Salmonella typhimurium infection in a nursery intensive care unit (NICU) and paediatric ward. J. Commun. Dis. 27(1), 10–14 (1995).
    • 91. Vaagland H, Blomberg B, Krüger C, Naman N, Jureen R, Langeland N. Nosocomial outbreak of neonatal Salmonella enterica serotype Enteritidis meningitis in a rural hospital in northern Tanzania. BMC Infect. Dis. 4, 35 (2004).
    • 92. Bouallegue-Godet O, Ben Salem Y, Fabre L et al. Nosocomial outbreak caused by Salmonella enterica serotype Livingstone producing CTX-M-27 extended-spectrum beta-lactamase in a neonatal unit in Sousse, Tunisia. J. Clin. Microbiol. 43(3), 1037–1044 (2005).
    • 93. DuPont HL, Levine MM, Hornick RB, Formal SB. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 159(6), 1126–1128 (1989).
    • 94. Kotloff KL, Winickoff JP, Ivanoff B et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77(8), 651–666 (1999).
    • 95. Arvelo W, Hinkle CJ, Nguyen TA et al. Transmission risk factors and treatment of pediatric shigellosis during a large daycare center-associated outbreak of multidrug resistant Shigella sonnei: implications for the management of shigellosis outbreaks among children. Pediatr. Infect. Dis. J. 28(11), 976–980 (2009).
    • 96. Shen H, Chen J, Xu Y et al. An outbreak of shigellosis in a children welfare institute caused by a multiple-antibiotic-resistant strain of Shigella flexneri 2a. J. Infect. Public Health 10(6), 814–818 (2017).
    • 97. Bryce A, Costelloe C, Hawcroft C, Wootton M, Hay AD. Faecal carriage of antibiotic resistant Escherichia coli in asymptomatic children and associations with primary care antibiotic prescribing: a systematic review and meta-analysis. BMC Infect. Dis. 16, 359 (2016).
    • 98. Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog. Glob. Health 108(5), 235–245 (2014).
    • 99. Hetzer B, Orth-Höller D, Würzner R et al. Enhanced acquisition of antibiotic-resistant intestinal E. coli during the first year of life assessed in a prospective cohort study. Antimicrob. Resist. Infect. Control 8, 79 (2019).
    • 100. Stapleton PJ, Murphy M, McCallion N, Brennan M, Cunney R, Drew RJ. Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: a systematic review. Arch. Dis. Child. Fetal Neonatal Ed. 101(1), F72–F78 (2016).
    • 101. Gurieva T, Dautzenberg MJD, Gniadkowski M, Derde LPG, Bonten MJM, Bootsma MCJ. The transmissibility of antibiotic-resistant Enterobacteriaceae in intensive care units. Clin. Infect. Dis. 66(4), 489–493 (2018).
    • 102. Silwedel C, Vogel U, Claus H, Glaser K, Speer CP, Wirbelauer J. Outbreak of multidrug-resistant Escherichia coli sequence type 131 in a neonatal intensive care unit: efficient active surveillance prevented fatal outcome. J. Hosp. Infect. 93(2), 181–186 (2016).
    • 103. Endimiani A, Luzzaro F, Brigante G et al. Proteus mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 49(7), 2598–2605 (2005).
    • 104. Sanches MS, Silva LC, Silva CRD et al. Prevalence of antimicrobial resistance and clonal relationship in ESBL/AmpC-producing Proteus mirabilis isolated from meat products and community-acquired urinary tract infection (UTI-CA) in Southern Brazil. Antibiotics (Basel) 12(2), 370 (2023).
    • 105. Ballot DE, Bandini R, Nana T et al. A review of -multidrug-resistant Enterobacteriaceae in a neonatal unit in Johannesburg, South Africa. BMC Pediatr. 19(1), 320 (2019).
    • 106. Jain S, Gaind R, Kothari C et al. VEB-1 extended-spectrum β-lactamase-producing multidrug-resistant Proteus mirabilis sepsis outbreak in a neonatal intensive care unit in India: clinical and diagnostic implications. JMM Case Rep. 3(4), e005056 (2016).
    • 107. Birt J, Le Doare K, Kortsalioudaki C, Lawn J, Heath PT, Sharland M. Lack of evidence for the efficacy of enhanced surveillance compared to other specific interventions to control neonatal healthcare-associated infection outbreaks. Trans. R Soc. Trop. Med. Hyg. 110(2), 98–106 (2016).
    • 108. Adjide CC, Li-Thiao-Te V, Biendo M et al. [Case control study of extended-spectrum betalactamase producing Serratia marcescens outbreak in a paediatric intensive care unit]. Pathol. Biol. (Paris) 52(8), 423–428 (2004).
    • 109. Crivaro V, Bagattini M, Salza MF et al. Risk factors for extended-spectrum beta-lactamase-producing Serratia marcescens and Klebsiella pneumoniae acquisition in a neonatal intensive care unit. J. Hosp. Infect. 67(2), 135–141 (2007).
    • 110. Cullen MM, Trail A, Robinson M, Keaney M, Chadwick PR. Serratia marcescens outbreak in a neonatal intensive care unit prompting review of decontamination of laryngoscopes. J. Hosp. Infect. 59(1), 68–70 (2005).
    • 111. Casolari C, Pecorari M, Della Casa E et al. Serratia marcescens in a neonatal intensive care unit: two long-term multiclone outbreaks in a 10-year observational study. New Microbiol. 36(4), 373–383 (2013).
    • 112. Maragakis LL, Winkler A, Tucker MG et al. Outbreak of multidrug-resistant Serratia marcescens infection in a neonatal intensive care unit. Infect. Control Hosp. Epidemiol. 29(5), 418–423 (2008).
    • 113. Ferry A, Plaisant F, Ginevra C et al. Enterobacter cloacae colonisation and infection in a neonatal intensive care unit: retrospective investigation of preventive measures implemented after a multiclonal outbreak. BMC Infect. Dis. 20(1), 682 (2020).
    • 114. Stoesser N, Sheppard AE, Shakya M et al. Dynamics of MDR Enterobacter cloacae outbreaks in a neonatal unit in Nepal: insights using wider sampling frames and next-generation sequencing. J. Antimicrob. Chemother. 70(4), 1008–1015 (2015).
    • 115. Eichel V, Papan C, Boutin S, Pöschl J, Heeg K, Nurjadi D. Alteration of antibiotic regimen as an additional control measure in suspected multi-drug-resistant Enterobacter cloacae outbreak in a neonatal intensive care unit. J. Hosp. Infect. 104(2), 144–149 (2020).
    • 116. Gulcan H, Kuzucu C, Durmaz R. Nosocomial Stenotrophomonas maltophilia cross-infection: three cases in newborns. Am. J. Infect. Control 32(6), 365–368 (2004).
    • 117. Rogues AM, Maugein J, Allery A et al. Electronic ventilator temperature sensors as a potential source of respiratory tract colonization with Stenotrophomonas maltophilia. J. Hosp. Infect. 49(4), 289–292 (2001).
    • 118. Abbassi MS, Touati A, Achour W et al. Stenotrophomonas maltophilia responsible for respiratory infections in neonatal intensive care unit: antibiotic susceptibility and molecular typing. Pathol. Biol. (Paris) 57(5), 363–367 (2009).
    • 119. Viswanathan R, Singh AK, Ghosh C, Basu S. Stenotrophomonas maltophilia causing early onset neonatal sepsis. Indian Pediatr. 48(5), 397–399 (2011).
    • 120. Verweij PE, Meis JF, Christmann V et al. Nosocomial outbreak of colonization and infection with Stenotrophomonas maltophilia in preterm infants associated with contaminated tap water. Epidemiol. Infect. 120(3), 251–256 (1998).
    • 121. Sah R, Siwakoti S, Baral R, Rajbhandari RS, Khanal B. Stenotrophomonas maltophilia causing blood stream infection in neonates and infants: a cause for concern. Trop. Doct. 48(3), 227–229 (2018).
    • 122. Lanotte P, Cantagrel S, Mereghetti L et al. Spread of Stenotrophomonas maltophilia colonization in a pediatric intensive care unit detected by monitoring tracheal bacterial carriage and molecular typing. Clin. Microbiol. Infect. 9(11), 1142–1147 (2003).
    • 123. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168(8), 918–951 (2003).
    • 124. Valdezate S, Vindel A, Maiz L, Baquero F, Escobar H, Canton R. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991–1998. Emerg. Infect. Dis. 7(1), 113–122 (2001).
    • 125. Gil-Gil T, Martinez JL, Blanco P. Mechanisms of antimicrobial resistance in Stenotrophomonas maltophilia: a review of current knowledge. Expert Rev. Anti Infect Ther. 18(4), 335–347 (2020).
    • 126. Salah A, Al-Subol I, Hudna A et al. Neonatal sepsis in Sana'a city, Yemen: a predominance of Burkholderia cepacia. BMC Infect. Dis. 21(1), 1108 (2021).
    • 127. Kwayess R, Al Hariri HE, Hindy JR, Youssef N, Haddad SF, Kanj SS. Burkholderia cepacia infections at sites other than the respiratory tract: a large case series from a tertiary referral hospital in Lebanon. J. Epidemiol. Glob. Health. 12(3), 274–280 (2022).
    • 128. Cetin BS, Orman A. Burkholderia cepacia complex infections in urgently referred neonates from Syrian border regions to a hospital in Turkey: a cross-border cluster. Children (Basel) 9(10), 1566 (2022).
    • 129. Zaidi AK, Huskins WC, Thaver D, Bhutta ZA, Abbas Z, Goldmann DA. Hospital-acquired neonatal infections in developing countries. Lancet 365(9465), 1175–1188 (2005).
    • 130. Bharara T, Chakravarti A, Sharma M, Agarwal P. Investigation of Burkholderia cepacia complex bacteremia outbreak in a neonatal intensive care unit: a case series. J. Med. Case Rep. 14(1), 76 (2020).
    • 131. Kuzumoto K, Kubota N, Ishii K et al. Successful cessation of transmitting healthcare–associated infections due to Burkholderia cepacia complex in a neonatal intensive care unit in a Japanese children's hospital. Eur. J. Med. Res. 16(12), 537–542 (2011).
    • 132. Abdallah M, Abdallah HA, Memish ZA. Burkholderia cepacia complex outbreaks among non-cystic fibrosis patients in the intensive care units: a review of adult and pediatric literature. Infez. Med. 26(4), 299–307 (2018).
    • 133. Doit C, Loukil C, Simon AM et al. Outbreak of Burkholderia cepacia bacteremia in a pediatric hospital due to contamination of lipid emulsion stoppers. J. Clin. Microbiol. 42(5), 2227–2230 (2004).
    • 134. Gray J, Omar N. Nosocomial infections in neonatal intensive care units in developed and developing countries: how can we narrow the gap? J. Hosp. Infect. 83(3), 193–195 (2013).
    • 135. Panlilio AL, Beck-Sague CM, Siegel JD et al. Infections and pseudoinfections due to povidone-iodine solution contaminated with Pseudomonas cepacia. Clin. Infect. Dis. 14(5), 1078–1083 (1992).
    • 136. van Laer F, Raes D, Vandamme P et al. An outbreak of Burkholderia cepacia with septicemia on a cardiology ward. Infect. Control Hosp. Epidemiol. 19(2), 112–113 (1998).
    • 137. Hamill RJ, Houston ED, Georghiou PR et al. An outbreak of Burkholderia (formerly Pseudomonas) cepacia respiratory tract colonization and infection associated with nebulized albuterol therapy. Ann. Intern. Med. 122(10), 762–766 (1995).
    • 138. Shrivastava B, Sriram A, Shetty S, Doshi R, Varior R. An unusual source of Burkholderia cepacia outbreak in a neonatal intensive care unit. J. Hosp. Infect. 94(4), 358–360 (2016).
    • 139. Campana S, Taccetti G, Ravenni N et al. Transmission of Burkholderia cepacia complex: evidence for new epidemic clones infecting cystic fibrosis patients in Italy. J. Clin. Microbiol. 43(10), 5136–5142 (2005).
    • 140. Pegues DA, Schidlow DV, Tablan OC, Carson LA, Clark NC, Jarvis WR. Possible nosocomial transmission of Pseudomonas cepacia in patients with cystic fibrosis. Arch. Pediatr. Adolesc. Med. 148(8), 805–812 (1994).
    • 141. Burdge DR, Nakielna EM, Noble MA. Case-control and vector studies of nosocomial acquisition of Pseudomonas cepacia in adult patients with cystic fibrosis. Infect. Control Hosp. Epidemiol. 14(3), 127–130 (1993).
    • 142. Bernhardt SA, Spilker T, Coffey T, LiPuma JJ. Burkholderia cepacia complex in cystic fibrosis: frequency of strain replacement during chronic infection. Clin. Infect. Dis. 37(6), 780–785 (2003).
    • 143. Govan JR, Brown PH, Maddison J et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342(8862), 15–19 (1993).
    • 144. Monserrat-Martinez A, Gambin Y, Sierecki E. Thinking outside the bug: molecular targets and strategies to overcome antibiotic resistance. Int. J. Mol. Sci. 20(6), 1255 (2019).
    • 145. Wang S, Gao Y, Jin Q, Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater. Sci. 8(24), 6825–6839 (2020).
    • 146. Mathot F, Duke T, Daley AJ, Butcher T. Bacteremia and pneumonia in a tertiary PICU: an 11-year study. Pediatr. Crit. Care Med. 16(2), 104–113 (2015).
    • 147. Caggiano G, Triggiano F, Diella G et al. A possible outbreak by Serratia marcescens: genetic relatedness between clinical and environmental strains. Int. J. Environ. Res. Public Health 18(18), 9814 (2021).
    • 148. Romandini A, Pani A, Schenardi PA, Pattarino GAC, De Giacomo C, Scaglione F. Antibiotic resistance in pediatric infections: global emerging threats, predicting the near future. Antibiotics (Basel) 10(4), 393 (2021).
    • 149. Johnson J, Quach C. Outbreaks in the neonatal ICU: a review of the literature. Curr. Opin. Infect. Dis. 30(4), 395–403 (2017).
    • 150. Verdugo-Paiva F, Otaiza F, Roson-Rodriguez P et al. Effects of screening strategies to detect carbapenem-resistant Gram-negative bacteria: a systematic review. Am. J. Infect. Control 50(12), 1381–1388 (2022).
    • 151. Brooks B, Firek BA, Miller CS et al. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome 2(1), 1 (2014).
    • 152. Beckstrom AC, Cleman PE, Cassis-Ghavami FL, Kamitsuka MD. Surveillance study of bacterial contamination of the parent's cell phone in the NICU and the effectiveness of an anti-microbial gel in reducing transmission to the hands. J. Perinatol. 33(12), 960–963 (2013).
    • 153. Wilson APR. The role of the environment in the spread of healthcare associated infections. J. Hosp. Infect. 100(3), 363–364 (2018).
    • 154. Muzslay M, Yui S, Ali S, Wilson APR. Ultraviolet-C decontamination of hand-held tablet devices in the healthcare environment using the Codonics D6000 disinfection system. J. Hosp. Infect. 100(3), e60–e63 (2018).
    • 155. Shaw E, Gavalda L, Camara J et al. Control of endemic multidrug-resistant Gram-negative bacteria after removal of sinks and implementing a new water-safe policy in an intensive care unit. J. Hosp. Infect. 98(3), 275–281 (2018).
    • 156. Decraene V, Phan HTT, George R et al. A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrob. Agents Chemother. 62(12), e01689–18(2018). •• A useful study providing new insights and approaches to infection control policies against carbapenem-resistant Gram-negative bacteria.
    • 157. Aranega-Bou P, George RP, Verlander NQ et al. Carbapenem-resistant Enterobacteriaceae dispersal from sinks is linked to drain position and drainage rates in a laboratory model system. J. Hosp. Infect. 102(1), 63–69 (2019).
    • 158. de Jonge E, de Boer MGJ, van Essen EHR, Dogterom-Ballering HCM, Veldkamp KE. Effects of a disinfection device on colonization of sink drains and patients during a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit. J. Hosp. Infect. 102(1), 70–74 (2019).
    • 159. Monzani A, Minelli G, Rabbone I. Reduced burden of antibiotic prescription in an Italian pediatric primary care clinic during the first wave of COVID-19 pandemic: a shot in the arm for antimicrobial resistance? Ital. J. Pediatr. 49(1), 40 (2023).
    • 160. Solis DP, de Ona CG, Garcia MLN et al. [Use of antibiotics in paediatric primary health care before and during the COVID-19 pandemic]. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) doi: S2529-993X(22)00294-5 (2022).
    • 161. Murni IK, Duke T, Kinney S, Daley AJ, Soenarto Y. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: an effectiveness study. Arch. Dis. Child. 100(5), 454–459 (2015).
    • 162. Araujo da Silva AR, Albernaz de Almeida Dias DC, Marques AF et al. Role of antimicrobial stewardship programmes in children: a systematic review. J. Hosp. Infect. 99(2), 117–123 (2018).
    • 163. Zombori L, Paulus S, Shah MA, McGarrity O, Hatcher J. Antibiotic spectrum index as an antimicrobial stewardship tool in paediatric intensive care settings. Int. J. Antimicrob. Agents 61(2), 106710 (2023). •• An interesting study presenting the antibiotic spectrum index in children as a tool before and throughout the coronavirus 2019 pandemic to trace patient groups and time periods where broader-spectrum antimicrobials are used and contributing to antimicrobial stewardship attempts.
    • 164. Murray MT, Cohen B, Neu N et al. Infection prevention and control practices in pediatric long-term care facilities. Am. J. Infect. Control 42(11), 1233–1234 (2014).