We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Silver-based gels for oral and skin infections: antimicrobial effect and physicochemical stability

    João MC Silva

    Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil

    ,
    Ana BV Teixeira

    Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil

    &
    Andréa C Reis

    *Author for correspondence:

    E-mail Address: andreare73@yahoo.com.br

    Department of Dental Materials & Prosthesis, Ribeirão Preto Dental School, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil

    Published Online:https://doi.org/10.2217/fmb-2023-0034

    Aim: To systematically evaluate the literature on silver (Ag) gels and their antimicrobial efficacy and physicochemical stability. Materials & methods: A search was performed in PubMed/MEDLINE, LILACS, Web of Science, Scopus, Embase and Google Scholar. Results: Gels were formulated with Ag nanoparticles, Ag oxynitrate and colloidal Ag and showed antimicrobial activity for concentrations ranging from 0.002 to 30%. Gels showed stability of their chemical components, and their physicochemical properties, including viscosity, organoleptic characteristics, homogeneity, pH and spreadability, were suitable for topical application. Conclusion: Ag-based gels show antimicrobial action proportional to concentration, with higher action against Gram-negative bacteria and physicochemical stability for oral and skin infection applications.

    Tweetable abstract

    Gels based on silver components developed for topical application on the skin and mouth exhibit antimicrobial action and physicochemical stability of the chemical components.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Shi Z, Pan S, Wang L, Li S. Topical gel based nanoparticles for the controlled release of oleanolic acid: design and in vivo characterization of a cubic liquid crystalline anti-inflammatory drug. BMC Complement. Med. Ther. 21(1), 1–13 (2021).
    • 2. Ferraz CCR, Gomes BPFA, Zaia AA, Teixeira FB, Souza-Filho FJ. Comparative study of the antimicrobial efficacy of chlorhexidine gel, chlorhexidine solution and sodium hypochlorite as endodontic irrigants. Braz. Dent. J. 18(4), 294–298 (2007).
    • 3. Sunita P, Palaniswamy M. A bio-inspired approach of formulation and evaluation of Aegle marmelos fruit extract mediated silver nanoparticle gel and comparison of its antibacterial activity with antiseptic cream. Eur. J. Integr. Med. 33, 101025 (2020).
    • 4. Sámano-Valencia C, Martinez-Castanon GA, Martínez-Martínez RE et al. Bactericide efficiency of a combination of chitosan gel with silver nanoparticles. Mater. Lett. 106, 413–416 (2013). •• Discusses the antimicrobial effect of gel containing chitosan and silver nanoparticles (AgNPs).
    • 5. Annisa R, Suryadinata A, Nashichuddin A, Fauziyah B, Mutiah R, Hendrawan NZ. Development of an antimicrobial gel formulation for topical delivery using silver nanoparticle. Indian J. Nov. Drug Deliv. 11(1), 13–19 (2019).
    • 6. Ermawati DE, Yugatama A, Ramadhani BR, Pertiwi I, Rosikhoh A, Novachiria SR. Stability and antibacterial activity test of nanosilver biosynthetic hydrogel. Int. J. Appl. Pharm. 14(2), 221–226 (2022).
    • 7. Spina CJ, Notarandrea-Alfonzo J, Hay M et al. Silver oxynitrate gel formulation for enhanced stability and antibiofilm efficacy. Int. J. Pharm. 580, 119197 (2020).
    • 8. Haidari H, Kopecki Z, Bright R et al. Ultrasmall AgNP-impregnated biocompatible hydrogel with highly effective biofilm elimination properties. ACS Appl. Mater. Interfaces 12(37), 41011–41025 (2020).
    • 9. Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 15(1), 819–839 (2020). • Discusses application of AgNPs in the biomedical area.
    • 10. Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci. 20(4), 1–24 (2019).
    • 11. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20), 8996–9031 (2020).
    • 12. Kowalczyk P, Szymczak M, Maciejewska M et al. All that glitters is not silver – a new look at microbiological and medical applications of silver nanoparticles. Int. J. Mol. Sci. 22(2), 1–29 (2021).
    • 13. Tran PA, Hocking DM, O'Connor AJ. In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Mater. Sci. Eng. C Mater. Biol. Appl. 47, 63–69 (2015).
    • 14. Kirubaharan JC, Fang Z, Sha C, Yong YC. Green synthesis of Ag and Pd nanoparticles for water pollutants treatment. Water Sci. Technol. 82(11), 2344–2352 (2020).
    • 15. Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46(Suppl. 1), 115–126 (2018).
    • 16. Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J. Biol. Sci. 29(4), 2085–2094 (2022).
    • 17. Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. 533(1), 195–200 (2020). • Discusses important results regarding the antiviral effect of AgNPs against SARS-CoV-2.
    • 18. Marimuthu S, Antonisamy AJ, Malayandi S et al. Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J. Photochem. Photobiol. B 205, 111823 (2020). • Reviews AgNP synthesis, mechanism of action, application and toxicity.
    • 19. Dos Santos CA, Seckler MM, Ingle AP et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm. Sci. 103(7), 1931–1944 (2019).
    • 20. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 357, 1–17 (2018).
    • 21. Yin J, Meng Q, Cheng D et al. Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Appl. Microbiol. Biotechnol. 104(9), 3771–3780 (2020).
    • 22. Shahzadi I, Shah SMA, Shah MM et al. Antioxidant, cytotoxic, and antimicrobial potential of silver nanoparticles synthesized using Tradescantia pallida extract. Front. Bioeng. Biotechnol. 10, 1–13 (2022).
    • 23. Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39(1), 77–85 (2011). •• Discusses antibacterial effect of AgNPs against resistant bacterial strains.
    • 24. Teixeira ABV, Moreira NCS, Takahashi CS et al. Cytotoxic and genotoxic effects in human gingival fibroblast and ions release of endodontic sealers incorporated with nanostructured silver vanadate. J. Biomed. Mater. Res. B Appl. Biomater. 109(9), 1380–1388 (2021).
    • 25. Teixeira ABV, Vidal CL, Albiesetti T, Castro DT, Reis AC. Influence of adding nanoparticles of silver vanadate on antibacterial effect and physicochemical properties of endodontic sealers. Iran. Endod. J. 14(1), 7–13 (2019).
    • 26. Teixeira ABV, Castro DT, Marco DC, Schiavon MA, Reis AC. Cytotoxicity and release ions of endodontic sealers incorporated with a silver and vanadium base nanomaterial. Odontology 108(4), 661–668 (2020).
    • 27. Bamal D, Singh A, Chaudhary G et al. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: an updated review. Nanomaterials (Basel) 11(8), 2086 (2021).
    • 28. Tran PL, Luth K, Wang J et al. Efficacy of a silver colloidal gel against selected oral bacteria in vitro. F1000Res 8, 267 (2019).
    • 29. Tran P, Kopel J, Luth K et al. The in vitro efficacy of Betadine antiseptic solution and colloidal silver gel combination in inhibiting the growth of bacterial biofilms. Am. J. Infect. Control 51(1), 23–28 (2022).
    • 30. Alvarado-Gomez E, Martínez-Castañon G, Sanchez-Sanchez R, Ganem-Rondero A, Yacaman MJ, Martinez-Gutierrez F. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. Mater. Sci. Eng. C Mater. Biol. Appl. 92, 621–630 (2018).
    • 31. Jadhav K, Dhamecha D, Bhattacharya D, Patil M. Green and ecofriendly synthesis of silver nanoparticles: characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J. Photochem. Photobiol. B 155, 109–115 (2016).
    • 32. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol. Pharm. 6(5), 1388–1401 (2009).
    • 33. Ontong JC, Singh S, Nwabor OF, Chusri S, Voravuthikunchai SP. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol. Lett. 42(12), 2653–2664 (2020).
    • 34. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76–83 (2009).
    • 35. Kreve S, Botelho AL, Valente MLC, Bachmann L, Schiavon MA, Reis AC. Incorporation of a β-AgVO3 semiconductor in resin cement: evaluation of mechanical properties and antibacterial efficacy. J. Adhes. Dent. 24(1), 155–164 (2022).
    • 36. Al Mashud MA, Moinuzzaman M, Hossain MS et al. Green synthesis of silver nanoparticles using Cinnamomum tamala (tejpata) leaf and their potential application to control multidrug resistant Pseudomonas aeruginosa isolated from hospital drainage water. Heliyon 8(7), e09920 (2022).
    • 37. Chakraborty A, Haque SM, Ghosh D et al. Silver nanoparticle synthesis and their potency against multidrug-resistant bacteria: a green approach from tissue-cultured Coleus forskohlii. 3 Biotech. 12(9), 1–13 (2022).
    • 38. Wang Y, Wang QM, Feng W et al. Antibacterial activity and mechanism of moxifloxacin nanoparticles against drug-resistant Pseudomonas aeruginosa. Acta Pharm. Sin. B 12(9), 2460–2465 (2020).
    • 39. Coriolano DL, de Souza JB, Bueno EV, de Fátima Ramos Dos Santos Medeiros SM, Cavalcanti IDL, Cavalcanti IMF. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Braz. J. Microbiol. 52(1), 267–278 (2020). • Discusses antibacterial and antibiofilm effect of AgNPs against antibiotic-resistant bacterial strains.
    • 40. Page MJ, Moher D, Bossuyt PM et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372, n160 (2021).
    • 41. Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int. J. Evid. Based Healthc. 13(3), 147–153 (2015).
    • 42. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11(6), 371–384 (2013).
    • 43. Koduru JR, Kailasa SK, Bhamore JR. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv. Colloid Interface Sci. 256, 326–339 (2018).
    • 44. Kreve S, Reis AC. Bacterial adhesion to biomaterials: what regulates this attachment? A review. Jpn Dent. Sci. Rev. 57, 85–96 (2021).
    • 45. Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol. 4(1), 42–66 (2018).
    • 46. Muras A, Mallo N, Otero-Casal P, Pose-Rodríguez JM, Otero A. Quorum sensing systems as a new target to prevent biofilm-related oral diseases. Oral Dis. 28(2), 307–313 (2022).
    • 47. FakhriRavari A, Simiyu B, Morrisette T, Dayo Y, Abdul-Mutakabbir JC. Infectious disease: how to manage Gram-positive and Gram-negative pathogen conundrums with dual beta-lactam therapy. Drugs Context 11, 1–18 (2022).
    • 48. Noga M, Milan J, Frydrych A, Jurowski K. Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs) – critical review: state of the art. Int. J. Mol. Sci. 24(6), 5133 (2023). • Systematic review on the in vivo toxicity of AgNPs.
    • 49. Warrier A, Satyamoorthy K, Murali TS. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol. 16(13), 1003–1021 (2021).
    • 50. Striednig B, Hilbi H. Trends in microbiology bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. Trends Microbiol. 30(4), 379–389 (2022).
    • 51. Barapatre A, Aadil KR, Jha H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess. 3(8), 1–13 (2016).
    • 52. Subramaniyan SB, Senthilnathan R, Arunachalam J, Anbazhagan V. Revealing the significance of the glycan binding property of Butea monosperma seed lectin for enhancing the antibiofilm activity of silver nanoparticles against uropathogenic Escherichia coli. Bioconjug. Chem. 31(1), 139–148 (2020).
    • 53. Divakar S, Lama M, Asad UK. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 8, 76 (2019).
    • 54. Shah S, Gaikwad S, Nagar S et al. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling 35(1), 34–49 (2019).
    • 55. Jalab J, Abdelwahed W, Kitaz A, Al-Kayali R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon 7(9), e08033 (2021).
    • 56. Manso S, Wrona M, Salafranca J, Nerín C, Alfonso MJ, Caballero MA. Evaluation of new antimicrobial materials incorporating ethyl lauroyl arginate or silver into different matrices, and their safety in use as potential packaging. Polymers (Basel) 13(3), 355 (2021).
    • 57. Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle–hydrogel: a hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng. 44(6), 2049–2061 (2016).
    • 58. Ahrari F, Eslami N, Rajabi O, Ghazvini K, Barati S. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. Dent. Res. J. (Isfahan) 12(1), 44–49 (2015).
    • 59. More VP, Hugar SM, Sogi S, Bhambar RS, Suganya M, Hugar S. Comparative evaluation of the efficacy of chlorhexidine, fluoride and the combined use of chlorhexidine and fluoride varnishes on salivary Streptococcus mutans count in children with mixed dentition: an in vivo study. Int. J. Clin. Pediatr. Dent. 15(3), 267–272 (2022).
    • 60. van de Lagemaat M, Stockbroekx V, Geertsema-Doornbusch GI et al. A comparison of the adaptive response of Staphylococcus aureus vs. Streptococcus mutans and the development of chlorhexidine resistance. Front. Microbiol. 13, 861890 (2022).
    • 61. Reda B, Hollemeyer K, Trautmann S, Volmer DA, Hannig M. First insights into chlorhexidine retention in the oral cavity after application of different regimens. Clin. Oral Investig. 25(11), 6109–6118 (2021).
    • 62. Mehdipour A, Ehsani A, Samadi N, Ehsani M, Sharifinejad N. The antimicrobial and antibiofilm effects of three herbal extracts on Streptococcus mutans compared with chlorhexidine 0.2% (in vitro study). J. Med. Life 15(4), 526–532 (2022).
    • 63. Attin T, Abouassi T, Becker K, Wiegand A, Roos M, Attin R. A new method for chlorhexidine (CHX) determination: CHX release after application of differently concentrated CHX-containing preparations on artificial fissures. Clin. Oral Investig. 12(3), 189–196 (2008).
    • 64. Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A. Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol. In Vitro 22(2), 308–317 (2008).
    • 65. Baldino MEL, Medina-Silva R, Sumienski J, Figueiredo MA, Salum FG, Cherubini K. Nystatin effect on chlorhexidine efficacy against Streptococcus mutans as planktonic cells and mixed biofilm with Candida albicans. Clin. Oral Investig. 26(1), 633–642 (2022).
    • 66. Alaeddini B, Koocheki A, Milani JM, Razavi SMA, Ghanbarzadeh B. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating–cooling rate. J. Sci. Food Agric. 98(7), 2713–2720 (2018).
    • 67. Choudhury MD, Chandra S, Nag S, Das S, Tarafdar S. Forced spreading and rheology of starch gel: viscoelastic modeling with fractional calculus. Colloids Surf. A Physicochem. Eng. Asp. 407, 64–70 (2021).
    • 68. Sobral-Souza DF, Gouveia THN, Condeles AL et al. Effect of accelerated stability on the physical, chemical, and mechanical properties of experimental bleaching gels containing different bioadhesive polymers. Clin. Oral Investig. 26(3), 3261–3271 (2022). •• Evaluates the physicochemical properties of gels.
    • 69. Chisini LA, Conde MCM, Meireles SS et al. Effect of temperature and storage time on dental bleaching effectiveness. J. Esthet. Restor. Dent. 31(1), 93–97 (2019).
    • 70. Choi DW, Chang YH. Steady and dynamic shear rheological properties of buckwheat starch–galactomannan mixtures. Prev. Nutr. Food Sci. 17(3), 192–196 (2012).
    • 71. Oriqui LR, Mori M, Wongtschowski P. Guide for determining the stability of chemical products. Quim. Nova 36(2), 340–347 (2013). •• Presents a guide for determining the stability of chemical products.
    • 72. Oriqui LR, Mori M, Wongtschowski P, Freitas SR, Santos JGM. Defining shelf life for a chemical product - the importance of a specific stability guide for the segment.. Quim. Nova 34(10), 1869–1874 (2011).