We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

An update on the global treatment of invasive fungal infections

    Melissa E Munzen

    Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA

    ,
    Ariana D Goncalves Garcia

    Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA

    &
    Luis R Martinez

    *Author for correspondence:

    E-mail Address: lmartinez@dental.ufl.edu

    Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA

    Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA

    Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA

    Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA

    Published Online:https://doi.org/10.2217/fmb-2022-0269

    Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Carmona EM, Limper AH. Overview of treatment approaches for fungal infections. Clin. Chest Med. 38(3), 393–402 (2017).
    • 2. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci. Transl. Med. 4(165), 165rv113 (2012).
    • 3. WHO. WHO releases first-ever list of health-threatening fungi (2022). www.who.int/news/item/25-10-2022-who-releases-first-ever-list-of-health-threatening-fungi (Accessed 2 December 2022).
    • 4. Fisher MC, Henk DA, Briggs CJ et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393), 186–194 (2012).
    • 5. Revie NM, Iyer KR, Robbins N, Cowen LE. Antifungal drug resistance: evolution, mechanisms and impact. Curr. Opin. Microbiol. 45, 70–76 (2018).
    • 6. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360(6390), 739–742 (2018).
    • 7. Low CY, Rotstein C. Emerging fungal infections in immunocompromised patients. F1000 Med. Rep. 3, 14 (2011).
    • 8. Gonzalez-Lara MF, Sifuentes-Osornio J, Ostrosky-Zeichner L. Drugs in clinical development for fungal infections. Drugs 77(14), 1505–1518 (2017).
    • 9. McKeny PT, Trevor NA, Zito PM. Antifungal antibiotics. In: StatPearls. StatPearls Publishing, Treasure Island, FL, USA (2022). https://www.ncbi.nih.gov/books/NBK538168/
    • 10. Rauseo AM, Coler-Reilly A, Larson L, Spec A. Hope on the horizon: novel fungal treatments in development. Open Forum Infect. Dis. 7(2), ofaa016 (2020).
    • 11. Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10(4), e01397 (2019).
    • 12. Casadevall A, Kontoyiannis DP, Robert V. Environmental Candida auris and the global warming emergence hypothesis. mBio 12(2), e00360 (2021).
    • 13. Singh S, Chandra U, Anchan VN, Verma P, Tilak R. Limited effectiveness of four oral antifungal drugs (fluconazole, griseofulvin, itraconazole and terbinafine) in the current epidemic of altered dermatophytosis in India: results of a randomized pragmatic trial. Br. J. Dermatol. 183(5), 840–846 (2020).
    • 14. The American Association of Neurological Surgeons ASoNC, Interventional Radiology Society of Europe CIRACoNSESoMINTESoNESOSfCA, Interventions SoIRSoNS et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke 13(6), 612–632 (2018).
    • 15. Mukherjee PK, Sheehan DJ, Hitchcock CA, Ghannoum MA. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 18(1), 163–194 (2005). • Describes the issues with current antifungal treatment while providing a comprehensive discussion of the impact of combination treatment. Standardization testing and analysis of combination therapy will allow for advancement in drug development.
    • 16. Srinivasan A, Lopez-Ribot JL, Ramasubramanian AK. Overcoming antifungal resistance. Drug Discov. Today Technol. 11, 65–71 (2014). •• Discusses the challenges in developing new anti fungal agent and highlight the importance of combination therapies, drug repurposing and alternative therapies. Discusses the potential role of novel drug-delivery system in improving drug efficacy and rehung drug resistance.
    • 17. Wall G, Lopez-Ribot JL. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics (Basel) 9(8), 445 (2020).
    • 18. Johnson PC, Wheat LJ, Cloud GA et al. Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann. Intern. Med. 137(2), 105–109 (2002).
    • 19. Bennett JE, Dismukes WE, Duma RJ et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N. Engl. J. Med. 301(3), 126–131 (1979).
    • 20. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46(2), 171–179 (2000).
    • 21. Loyse A, Thangaraj H, Easterbrook P et al. Cryptococcal meningitis: improving access to essential antifungal medicines in resource-poor countries. Lancet Infect. Dis. 13(7), 629–637 (2013).
    • 22. Kneale M, Bartholomew JS, Davies E, Denning DW. Global access to antifungal therapy and its variable cost. J. Antimicrob. Chemother. 71(12), 3599–3606 (2016).
    • 23. Bicanic T, Wood R, Bekker LG, Darder M, Meintjes G, Harrison TS. Antiretroviral roll-out, antifungal roll-back: access to treatment for cryptococcal meningitis. Lancet Infect. Dis. 5(9), 530–531 (2005).
    • 24. Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14(16), 1471–1510 (1998).
    • 25. Marks DI, Pagliuca A, Kibbler CC et al. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. Br. J. Haematol. 155(3), 318–327 (2011).
    • 26. Birnbaum JE. Pharmacology of the allylamines. J. Am. Acad. Dermatol. 23(4 Pt 2), 782–785 (1990).
    • 27. Demuyser L, Van Dyck K, Timmermans B, Van Dijck P. Inhibition of vesicular transport influences fungal susceptibility to fluconazole. Antimicrob. Agents Chemother. 63(5), e01998 (2018).
    • 28. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12(4), 501–517 (1999).
    • 29. Pfaller MA, Boyken L, Hollis RJ, Messer SA, Tendolkar S, Diekema DJ. In vitro susceptibilities of clinical isolates of Candida species, Cryptococcus neoformans, and Aspergillus species to itraconazole: global survey of 9359 isolates tested by clinical and laboratory standards institute broth microdilution methods. J. Clin. Microbiol. 43(8), 3807–3810 (2005).
    • 30. Yoshida I, Saito AM, Tanaka S et al. Intravenous itraconazole compared with liposomal amphotericin B as empirical antifungal therapy in patients with neutropaenia and persistent fever. Mycoses 63(8), 794–801 (2020).
    • 31. Chaftari AM, Hachem RY, Ramos E et al. Comparison of posaconazole versus weekly amphotericin B lipid complex for the prevention of invasive fungal infections in hematopoietic stem-cell transplantation. Transplantation 94(3), 302–308 (2012).
    • 32. Liu K, Wu D, Li J et al. Pharmacokinetics and safety of posaconazole tablet formulation in Chinese participants at high risk for invasive fungal infection. Adv. Ther. 37(5), 2493–2506 (2020).
    • 33. Sun QN, Fothergill AW, McCarthy DI, Rinaldi MG, Graybill JR. In vitro activities of posaconazole, itraconazole, voriconazole, amphotericin B, and fluconazole against 37 clinical isolates of zygomycetes. Antimicrob. Agents Chemother. 46(5), 1581–1582 (2002).
    • 34. Pfaller MA, Messer SA, Hollis RJ, Jones RN, Group SP. Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob. Agents Chemother. 46(4), 1032–1037 (2002).
    • 35. Sabatelli F, Patel R, Mann PA et al. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob. Agents Chemother. 50(6), 2009–2015 (2006).
    • 36. Kersemaekers WM, van Iersel T, Nassander U et al. Pharmacokinetics and safety study of posaconazole intravenous solution administered peripherally to healthy subjects. Antimicrob. Agents Chemother. 59(2), 1246–1251 (2015).
    • 37. Sime FB, Stuart J, Butler J et al. Pharmacokinetics of intravenous posaconazole in critically ill patients with hypoalbuminaemia receiving continuous venovenous haemodiafiltration. Antimicrob. Agents Chemother. 62(6), 506–509 (2018).
    • 38. Marks DI, Liu Q, Slavin M. Voriconazole for prophylaxis of invasive fungal infections after allogeneic hematopoietic stem cell transplantation. Expert Rev. Anti Infect. Ther. 15(5), 493–502 (2017).
    • 39. Hendrix MJ, Larson L, Rauseo AM et al. Voriconazole versus itraconazole for the initial and step-down treatment of histoplasmosis: a retrospective cohort. Clin. Infect. Dis. 73(11), e3727–e3732 (2021).
    • 40. Park WB, Kim NH, Kim KH et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin. Infect. Dis. 55(8), 1080–1087 (2012).
    • 41. Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs 71(1), 11–41 (2011).
    • 42. Aguilar-Zapata D, Petraitiene R, Petraitis V. Echinocandins: the expanding antifungal armamentarium. Clin. Infect. Dis. 61(Suppl. 6), S604–S611 (2015).
    • 43. Glasmacher A, Cornely OA, Orlopp K et al. Caspofungin treatment in severely ill, immunocompromised patients: a case-documentation study of 118 patients. J. Antimicrob. Chemother. 57(1), 127–134 (2006).
    • 44. Muilwijk EW, Schouten JA, van Leeuwen HJ et al. Pharmacokinetics of caspofungin in ICU patients. J. Antimicrob. Chemother. 69(12), 3294–3299 (2014).
    • 45. Kim J, Nakwa FL, Araujo Motta F et al. A randomized, double-blind trial investigating the efficacy of caspofungin versus amphotericin B deoxycholate in the treatment of invasive candidiasis in neonates and infants younger than 3 months of age. J. Antimicrob. Chemother. 75(1), 215–220 (2020).
    • 46. Kontoyiannis DP, Bassetti M, Nucci M et al. Anidulafungin for the treatment of candidaemia caused by Candida parapsilosis: analysis of pooled data from six prospective clinical studies. Mycoses 60(10), 663–667 (2017).
    • 47. van der Geest PJ, Hunfeld NG, Ladage SE, Groeneveld AB. Micafungin versus anidulafungin in critically ill patients with invasive candidiasis: a retrospective study. BMC Infect. Dis. 16, 490 (2016).
    • 48. van Burik JA, Ratanatharathorn V, Stepan DE et al. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin. Infect. Dis. 39(10), 1407–1416 (2004).
    • 49. Jeong SH, Kim DY, Jang JH et al. Efficacy and safety of micafungin versus intravenous itraconazole as empirical antifungal therapy for febrile neutropenic patients with hematological malignancies: a randomized, controlled, prospective, multicenter study. Ann. Hematol. 95(2), 337–344 (2016).
    • 50. McCarty TP, Lockhart SR, Moser SA et al. Echinocandin resistance among Candida isolates at an academic medical centre 2005-15: analysis of trends and outcomes. J. Antimicrob. Chemother. 73(6), 1677–1680 (2018).
    • 51. Caplan T, Lorente-Macias A, Stogios PJ et al. Overcoming fungal echinocandin resistance through inhibition of the non-essential stress kinase Yck2. Cell Chem. Biol. 27(3), 269–282.e5 (2020).
    • 52. Cao C, Wang Y, Husain S, Soteropoulos P, Xue C. A mechanosensitive channel governs lipid flippase-mediated echinocandin resistance in Cryptococcus neoformans. mBio 10(6), e01952 (2019).
    • 53. Vago T, Baldi G, Colombo D et al. Effects of naftifine and terbinafine, two allylamine antifungal drugs, on selected functions of human polymorphonuclear leukocytes. Antimicrob. Agents Chemother. 38(11), 2605–2611 (1994).
    • 54. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal. J. Antimicrob. Chemother. 68(11), 2435–2444 (2013).
    • 55. Robbins N, Wright GD, Cowen LE. Antifungal drugs: the current armamentarium and development of new agents. Microbiol. Spectr. 4(5), FUNK-0002 (2016). •• Discusses the mechanisms of action and limitations of current antifungals and highlight identifying new targets, repurposing existing drugs and using novel drug-delivery systems. Emphasized the need for continued research and development of new anti fungal agents to combat antifungal resistance.
    • 56. Hospenthal DR, Bennett JE. Flucytosine monotherapy for cryptococcosis. Clin. Infect. Dis. 27(2), 260–264 (1998).
    • 57. Zhao T, Xu X, Wu Y et al. Comparison of amphotericin B deoxycholate in combination with either flucytosine or fluconazole, and voriconazole plus flucytosine for the treatment of HIV-associated cryptococcal meningitis: a prospective multicenter study in China. BMC Infect. Dis. 22(1), 677 (2022).
    • 58. Wu W, Lan W, Wu C, Fei Q. Synthesis and antifungal activity of pyrimidine derivatives containing an amide moiety. Front. Chem. 9, 695628 (2021).
    • 59. CDC. Antimicrobial-resistant fungi (2022). www.cdc.gov/fungal/antifungal-resistance.html (Accessed 1 December 2022).
    • 60. Rosenberg A, Ene IV, Bibi M et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat. Commun. 9(1), 2470 (2018).
    • 61. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 18(6), 319–331 (2020).
    • 62. Teng X, Wang Y, Gu J, Shi P, Shen Z, Ye L. Antifungal agents: design, synthesis, antifungal activity and molecular docking of phloroglucinol derivatives. Molecules 23(12), 3116 (2018).
    • 63. Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics (Basel) 9(6), 312 (2020).
    • 64. Perlin DS. Mechanisms of echinocandin antifungal drug resistance. Ann. NY Acad. Sci. 1354(1), 1–11 (2015).
    • 65. Al-Baqsami ZF, Ahmad S, Khan Z. Antifungal drug susceptibility, molecular basis of resistance to echinocandins and molecular epidemiology of fluconazole resistance among clinical Candida glabrata isolates in Kuwait. Sci. Rep. 10(1), 6238 (2020).
    • 66. McCarthy M, O'Shaughnessy EM, Walsh TJ. Amphotericin B: polyene resistance mechanisms. In: Antimicrobial Drug Resistance: Mechanisms of Drug Resistance, Volume 1. Mayers DLSobel JDOuellette MKaye KSMarchaim D (Eds). Springer International Publishing, Cham, Switzerland, 387–395 (2017).
    • 67. Lagowski D, Gnat S, Nowakiewicz A, Osinska M, Dylag M. Intrinsic resistance to terbinafine among human and animal isolates of Trichophyton mentagrophytes related to amino acid substitution in the squalene epoxidase. Infection 48(6), 889–897 (2020).
    • 68. Bermas A, Geddes-McAlister J. Combatting the evolution of antifungal resistance in Cryptococcus neoformans. Mol. Microbiol. 114(5), 721–734 (2020).
    • 69. Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin. Proc. 86(8), 805–817 (2011).
    • 70. Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob. Agents Chemother. 53(1), 24–34 (2009).
    • 71. Abdel-Hafez Y, Siaj H, Janajri M et al. Tolerability and epidemiology of nephrotoxicity associated with conventional amphotericin B therapy: a retrospective study in tertiary care centers in Palestine. BMC Nephrol. 23(1), 132 (2022).
    • 72. Shoham S, Groll AH, Petraitis V, Walsh TJ. Systemic antifungal agents. In: Infectious Diseases (4th Edition). Cohen JPowderly WGOpal SM (Eds). Elsevier, Amsterdam, Netherlands. 1333–1344; e4 (2017).
    • 73. Walsh TJ, Finberg RW, Arndt C et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N. Engl. J. Med. 340(10), 764–771 (1999).
    • 74. Tverdek FP, Kofteridis D, Kontoyiannis DP. Antifungal agents and liver toxicity: a complex interaction. Expert Rev. Anti Infect. Ther. 14(8), 765–776 (2016).
    • 75. Nivoix Y, Ledoux MP, Herbrecht R. Antifungal therapy: new and evolving therapies. Semin. Respir. Crit. Care Med. 41(1), 158–174 (2020).
    • 76. Mourad A, Perfect JR. Tolerability profile of the current antifungal armoury. J. Antimicrob. Chemother. 73(Suppl. 1), i26–i32 (2018).
    • 77. Alsowaida YS PB, Almulhim AS, Kalbasi A. 1159. Echinocandins dosing in obese patients: a systematic review. Open Forum Infect. Dis. 7(Suppl. 1), S606 (2020).
    • 78. Kauffman CA, Frame PT. Bone marrow toxicity associated with 5-fluorocytosine therapy. Antimicrob. Agents Chemother. 11(2), 244–247 (1977).
    • 79. Barnette DA, Davis MA, Dang NL et al. Lamisil (terbinafine) toxicity: determining pathways to bioactivation through computational and experimental approaches. Biochem. Pharmacol. 156, 10–21 (2018).
    • 80. Bicanic T, Bottomley C, Loyse A et al. Toxicity of amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob. Agents Chemother. 59(12), 7224–7231 (2015).
    • 81. Bodey GP, Anaissie EJ, Elting LS, Estey E, O'Brien S, Kantarjian H. Antifungal prophylaxis during remission induction therapy for acute leukemia fluconazole versus intravenous amphotericin B. Cancer 73(8), 2099–2106 (1994).
    • 82. Boonstra JM, van der Elst KC, Veringa A et al. Pharmacokinetic properties of micafungin in critically ill patients diagnosed with invasive candidiasis. Antimicrob. Agents Chemother. 61(12), e01398 (2017).
    • 83. Liu P, Mould DR. Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob. Agents Chemother. 58(8), 4718–4726 (2014).
    • 84. Walsh TJ, Driscoll T, Milligan PA et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob. Agents Chemother. 54(10), 4116–4123 (2010).
    • 85. Smith KD, Achan B, Hullsiek KH et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrob. Agents Chemother. 59(12), 7197–7204 (2015).
    • 86. Pace JR, DeBerardinis AM, Sail V et al. Repurposing the clinically efficacious antifungal agent itraconazole as an anticancer chemotherapeutic. J. Med. Chem. 59(8), 3635–3649 (2016).
    • 87. Geronikaki A, Kartsev V, Petrou A et al. Antibacterial activity of griseofulvin analogues as an example of drug repurposing. Int. J. Antimicrob. Agents 55(3), 105884 (2020).
    • 88. Zhang Q, Liu F, Zeng M, Mao Y, Song Z. Drug repurposing strategies in the development of potential antifungal agents. Appl. Microbiol. Biotechnol. 105(13), 5259–5279 (2021).
    • 89. Thangamani S, Maland M, Mohammad H et al. Repurposing approach identifies auranofin with broad spectrum antifungal activity that targets Mia40–Erv1 pathway. Front. Cell. Infect. Microbiol. 7, 4 (2017).
    • 90. Koromina M, Pandi MT, Patrinos GP. Rethinking drug repositioning and development with artificial intelligence, machine learning, and omics. OMICS 23(11), 539–548 (2019).
    • 91. Chakravarty K, Antontsev VG, Khotimchenko M et al. Accelerated repurposing and drug development of pulmonary hypertension therapies for COVID-19 treatment using an AI-integrated biosimulation platform. Molecules 26(7), 1912 (2021).
    • 92. Challa AP, Lavieri RR, Lewis JT et al. Systematically prioritizing candidates in genome-based drug repurposing. Assay Drug Dev. Technol. 17(8), 352–363 (2019).
    • 93. Labode J, Dullin C, Wagner WL, Myti D, Morty RE, Muhlfeld C. Evaluation of classifications of the monopodial bronchopulmonary vasculature using clustering methods. Histochem. Cell Biol. 158(5), 435–445 (2022).
    • 94. Siles SA, Srinivasan A, Pierce CG, Lopez-Ribot JL, Ramasubramanian AK. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob. Agents Chemother. 57(8), 3681–3687 (2013).
    • 95. Sun W, Park YD, Sugui JA et al. Rapid identification of antifungal compounds against Exserohilum rostratum using high throughput drug repurposing screens. PLoS ONE 8(8), e70506 (2013).
    • 96. Ji C, Liu N, Tu J et al. Drug repurposing of haloperidol: discovery of new benzocyclane derivatives as potent antifungal agents against cryptococcosis and candidiasis. ACS Infect. Dis. 6(5), 768–786 (2020).
    • 97. Yang W, Tu J, Ji C et al. Discovery of piperidol derivatives for combinational treatment of azole-resistant candidiasis. ACS Infect. Dis. 7(3), 650–660 (2021).
    • 98. El-Ganiny AM, Kamel HA, Yossef NE, Mansour B, El-Baz AM. Repurposing pantoprazole and haloperidol as efflux pump inhibitors in azole resistant clinical Candida albicans and non-albicans isolates. Saudi Pharm. J. 30(3), 245–255 (2022).
    • 99. Mangione W, Falls Z, Melendy T, Chopra G, Samudrala R. Shotgun drug repurposing biotechnology to tackle epidemics and pandemics. Drug Discov. Today 25(7), 1126–1128 (2020).
    • 100. Li T, Li L, Du F et al. Activity and mechanism of action of antifungal peptides from microorganisms: a review. Molecules 26(11), 3438 (2021).
    • 101. van Eijk M, Boerefijn S, Cen L et al. Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Med. Mycol. 58(8), 1073–1084 (2020).
    • 102. Martinez LR, Casadevall A. Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial molecules produced by the innate immune system. Infect. Immun. 74(11), 6118–6123 (2006).
    • 103. Ochiai A, Ogawa K, Fukuda M et al. Rice defensin OsAFP1 is a new drug candidate against human pathogenic fungi. Sci. Rep. 8(1), 11434 (2018).
    • 104. Kamli MR, Sabir JSM, Malik MA, Ahmad A. Human beta defensins-1, an antimicrobial peptide, kills Candida glabrata by generating oxidative stress and arresting the cell cycle in G0/G1 phase. Biomed. Pharmacother. 154, 113569 (2022).
    • 105. Yoo YJ, Kwon I, Oh SR et al. Antifungal effects of synthetic human beta-defensin-3-C15 peptide on Candida albicans-infected root dentin. J. Endod. 43(11), 1857–1861 (2017).
    • 106. Herrera-Arellano A, Jimenez-Ferrer E, Vega-Pimentel AM et al. Clinical and mycological evaluation of therapeutic effectiveness of Solanum chrysotrichum standardized extract on patients with pityriasis capitis (dandruff). A double blind and randomized clinical trial controlled with ketoconazole. Planta Med. 70(6), 483–488 (2004).
    • 107. da Silva AR, de Andrade Neto JB, da Silva CR et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob. Agents Chemother. 60(6), 3551–3557 (2016).
    • 108. Kuhnert E, Li Y, Lan N et al. Enfumafungin synthase represents a novel lineage of fungal triterpene cyclases. Environ. Microbiol. 20(9), 3325–3342 (2018).
    • 109. Schwebke JR, Sobel R, Gersten JK et al. Ibrexafungerp versus placebo for vulvovaginal candidiasis treatment: a phase 3, randomized, controlled superiority trial (VANISH 303). Clin. Infect. Dis. 74(11), 1979–1985 (2022).
    • 110. Hoenigl M, Sprute R, Egger M et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs 81(15), 1703–1729 (2021).
    • 111. Nakamura I, Ohsumi K, Takeda S et al. ASP2397 is a novel natural compound that exhibits rapid and potent fungicidal activity against Aspergillus species through a specific transporter. Antimicrob. Agents Chemother. 63(10), 02689 (2018).
    • 112. Hassan N, Firdaus S, Padhi S, Ali A, Iqbal Z. Investigating natural antibiofilm components: a new therapeutic perspective against candidal vulvovaginitis. Med. Hypotheses 148, 110515 (2021).
    • 113. Raad II, Zakhem AE, Helou GE, Jiang Y, Kontoyiannis DP, Hachem R. Clinical experience of the use of voriconazole, caspofungin or the combination in primary and salvage therapy of invasive aspergillosis in haematological malignancies. Int. J. Antimicrob. Agents 45(3), 283–288 (2015).
    • 114. Petraitiene R, Petraitis V, Maung BW, Naing E, Kavaliauskas P, Walsh TJ. Posaconazole alone and in combination with caspofungin for treatment of experimental Exserohilum rostratum meningoencephalitis: developing new strategies for treatment of phaeohyphomycosis of the central nervous system. J. Fungi (Basel) 6(1), 33 (2020).
    • 115. Tong Y, Zhang J, Wang L et al. Hyper-synergistic antifungal activity of rapamycin and peptide-like compounds against Candida albicans orthogonally via Tor1 kinase. ACS Infect. Dis. 7(10), 2826–2835 (2021).
    • 116. Vakil R, Knilans K, Andes D, Kwon GS. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles. Pharm. Res. 25(9), 2056–2064 (2008).
    • 117. Yoshida M, Tamura K, Masaoka T, Nakajo E. A real-world prospective observational study on the efficacy and safety of liposomal amphotericin B in 426 patients with persistent neutropenia and fever. J. Infect. Chemother. 27(2), 277–283 (2021).
    • 118. Zhang M, Lu J, Duan X et al. Rimonabant potentiates the antifungal activity of amphotericin B by increasing cellular oxidative stress and cell membrane permeability. FEMS Yeast Res. 21(3), foab016 (2021).
    • 119. Kim JH, Chan KL, Cheng LW et al. High efficiency drug repurposing design for new antifungal agents. Methods Protoc. 2(2), 31 (2019).
    • 120. Onyewu C, Blankenship JR, Del Poeta M, Heitman J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 47(3), 956–964 (2003).
    • 121. Yu Q, Ravu RR, Jacob MR et al. Synthesis of natural acylphloroglucinol-based antifungal compounds against Cryptococcus species. J. Nat. Prod. 79(9), 2195–2201 (2016).
    • 122. Choi JW, Lee KT, Kim S et al. Optimization and evaluation of novel antifungal agents for the treatment of fungal infection. J. Med. Chem. 64(21), 15912–15935 (2021).
    • 123. Dong Y, Liu X, An Y, Liu M, Han J, Sun B. Potent arylamide derivatives as dual-target antifungal agents: design, synthesis, biological evaluation, and molecular docking studies. Bioorg. Chem. 99, 103749 (2020).
    • 124. An Y, Dong Y, Liu M, Han J, Zhao L, Sun B. Novel naphthylamide derivatives as dual-target antifungal inhibitors: design, synthesis and biological evaluation. Eur. J. Med. Chem. 210, 112991 (2021).
    • 125. Baugh SDP, Chaly A, Weaver DG et al. Highly potent, broadly active antifungal agents for the treatment of invasive fungal infections. Bioorg. Med. Chem. Lett. 33, 127727 (2021).
    • 126. Hartmann DO, Shimizu K, Rothkegel M et al. Tailoring amphotericin B as an ionic liquid: an upfront strategy to potentiate the biological activity of antifungal drugs. RSC Adv. 11(24), 14441–14452 (2021).
    • 127. Shaw KJ, Ibrahim AS. Fosmanogepix: a review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J. Fungi (Basel) 6(4), 239 (2020).
    • 128. Jacobs SE, Zagaliotis P, Walsh TJ. Novel antifungal agents in clinical trials. F1000Res 10, 507 (2021).
    • 129. ClinicalTrials.gov. NCT04240886. Open-label study of APX001 for treatment of patients with invasive mold infections caused by aspergillus or rare molds (AEGIS) (2023). https://clinicaltrials.gov/ct2/show/NCT04240886 (Accessed 3 May 2023).
    • 130. ClinicalTrials.gov. NCT04148287. An open-label study of APX001 for treatment of patients with candidemia/invasive candidiasis caused by Candida auris (APEX) (2023). https://clinicaltrials.gov/ct2/show/NCT04148287 (Accessed 3 May 2023).
    • 131. Jallow S, Govender NP. Ibrexafungerp: a first-in-class oral triterpenoid glucan synthase inhibitor. J. Fungi (Basel) 7(3), 163 (2021).
    • 132. Bouz G, Dolezal M. Advances in antifungal drug development: an up-to-date mini review. Pharmaceuticals (Basel) 14(12), 1312 (2021).
    • 133. ClinicalTrials.gov. NCT05399641. Ibrexafungerp for the treatment of complicated vulvovaginal candidiasis (2023). https://clinicaltrials.gov/ct2/show/NCT05399641 (Accessed 3 May 2023).
    • 134. ClinicalTrials.gov. NCT05178862. A phase 3, randomized, double-blind study for patients with invasive candidiasis treated with IV echinocandin followed by either oral ibrexafungerp or oral fluconazole (MARIO) (2023). https://clinicaltrials.gov/ct2/show/NCT05178862 (Accessed 3 May 2023).
    • 135. ClinicalTrials.gov. NCT05668429. ADME study of [14∧C]-ibrexafungerp in healthy male subjects (2023). https://clinicaltrials.gov/ct2/show/NCT05668429 (Accessed 3 May 2023).
    • 136. ClinicalTrials.gov. NCT03672292. Study to evaluate the safety and efficacy of the coadministration of ibrexafungerp (SCY-078) with voriconazole in patients with invasive pulmonary aspergillosis (SCYNERGIA) (2023). https://clinicaltrials.gov/ct2/show/NCT03672292 (Accessed 3 May 2023).
    • 137. ClinicalTrials.gov. NCT03363841. Open-label study to evaluate the efficacy and safety of oral ibrexafungerp (SCY-078) in patients with candidiasis caused by Candida auris (CARES) (CARES) (2023). https://clinicaltrials.gov/ct2/show/NCT03363841 (Accessed 3 May 2023).
    • 138. ClinicalTrials.gov. NCT03059992. Study to evaluate the efficacy and safety of ibrexafungerp in patients with fungal diseases that are refractory to or intolerant of standard antifungal treatment (FURI) (2023). https://clinicaltrials.gov/ct2/show/NCT03059992 (Accessed 3 May 2023).
    • 139. Oliver JD, Sibley GEM, Beckmann N et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl Acad. Sci. USA 113(45), 12809–12814 (2016).
    • 140. ClinicalTrials.gov. NCT05101187. Olorofim aspergillus infection study (OASIS) (2022). https://clinicaltrials.gov/ct2/show/NCT05101187 (Accessed 3 May 2023).
    • 141. Gow NAR, Latge JP, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5(3), FUNK-0035 (2017).
    • 142. du Pre S, Beckmann N, Almeida MC et al. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob. Agents Chemother. 62(8), e00231-18 (2018).
    • 143. ClinicalTrials.gov. NCT05541107. Encochleated oral amphotericin for cryptococcal meningitis trial 3 (EnACT3) (2022). https://clinicaltrials.gov/ct2/show/NCT05541107 (Accessed 3 May 2023).
    • 144. Atukunda M KE, Rutakingirwa MK, Tugume L et al. 869. Oral encochleated amphotericin B for cryptococcal meningitis: a phase II randomized trial. Open Forum Infect. Dis. 9, ofac492.062 (2022).
    • 145. Viana R, Couceiro D, Carreiro T, Dias O, Rocha I, Teixeira MC. A genome-scale metabolic model for the human pathogen candida parapsilosis and early identification of putative novel antifungal drug targets. Genes (Basel) 13(2), 303 (2022).
    • 146. Lockhart DEA, Stanley M, Raimi OG et al. Targeting a critical step in fungal hexosamine biosynthesis. J. Biol. Chem. 295(26), 8678–8691 (2020).
    • 147. Demuyser L, Palmans I, Vandecruys P, Van Dijck P. Molecular elucidation of riboflavin production and regulation in Candida albicans, toward a novel antifungal drug target. mSphere 5(4), e00714-20 (2020).
    • 148. Shor E, Chauhan N. A case for two-component signaling systems as antifungal drug targets. PLoS Pathog. 11(2), e1004632 (2015).
    • 149. Dalla Lana DF, Carvalho AR, Lopes W et al. Structure-based design of delta-lactones for new antifungal drug development: susceptibility, mechanism of action, and toxicity. Folia Microbiol. (Praha) 64(4), 509–519 (2019).
    • 150. Brunet K, Martellosio JP, Tewes F, Marchand S, Rammaert B. Inhaled antifungal agents for treatment and prophylaxis of bronchopulmonary invasive mold infections. Pharmaceutics 14(3), 641 (2022).
    • 151. Colley T, Alanio A, Kelly SL et al. In vitro and in vivo antifungal profile of a novel and long-acting inhaled azole, PC945, on Aspergillus fumigatusinfection. Antimicrob. Agents Chemother. 61(5), e02280-16 (2017).
    • 152. Cass L, Murray A, Davis A et al. Safety and nonclinical and clinical pharmacokinetics of PC945, a novel inhaled triazole antifungal agent. Pharmacol. Res. Perspect. 9(1), e00690 (2021).
    • 153. Murray A, Cass L, Ito K et al. PC945, a novel inhaled antifungal agent, for the treatment of respiratory fungal infections. J. Fungi (Basel) 6(4), 373 (2020).
    • 154. Hashemi SM, Badali H, Faramarzi MA et al. Novel triazole alcohol antifungals derived from fluconazole: design, synthesis, and biological activity. Mol. Divers. 19(1), 15–27 (2015).
    • 155. Thompson GR, Soriano A, Skoutelis A et al. Rezafungin versus caspofungin in a phase 2, randomized, double-blind study for the treatment of candidemia and invasive candidiasis: the STRIVE trial. Clin. Infect. Dis. 73(11), e3647–e3655 (2021).
    • 156. Mima EG, Vergani CE, Machado AL et al. Comparison of photodynamic therapy versus conventional antifungal therapy for the treatment of denture stomatitis: a randomized clinical trial. Clin. Microbiol. Infect. 18(10), E380–388 (2012).
    • 157. Minie M, Chopra G, Sethi G et al. CANDO and the infinite drug discovery frontier. Drug Discov. Today 19(9), 1353–1363 (2014).
    • 158. Cong Y, Endo T. Multi-omics and artificial intelligence-guided drug repositioning: prospects, challenges, and lessons learned from COVID-19. OMICS 26(7), 361–371 (2022).
    • 159. Zielinski JM, Luke JJ, Guglietta S, Krieg C. High throughput multi-omics approaches for clinical trial evaluation and drug discovery. Front. Immunol. 12, 590742 (2021). •• A discussion of the role of omics in examining cellular phnotypes, immune function and oprimization of drug development. Using single cell multiomic approaches will advance scientific understanding of immune profiles and response to therapy.
    • 160. Bruch A, Kelani AA, Blango MG. RNA-based therapeutics to treat human fungal infections. Trends Microbiol. 30(5), 411–420 (2022).
    • 161. Noor A PC. Amphotericin B. In: StatPearls. StatPearls Publishing, Treasure Island, FL, USA (2022). https://pubmed.ncbi.nlm.nih.gov/29493952/
    • 162. Cornely OA, Maertens J, Bresnik M et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin. Infect. Dis. 44(10), 1289–1297 (2007).
    • 163. Govindarajan A BK, Ingold CJ, Aboeed A. Fluconazole. In: StatPearls. StatPearls Publishing, Treasure Island, FL, USA (2022). https://pubmed.ncbi.nlm.nih.gov/30725843/
    • 164. Kurn H,Wadhwa R. Itraconazole. In: StatPearls. StatPearls Publishing, Treasure Island, FL, USA (2022). https://pubmed.ncbi.nlm.nih.gov/32491797/
    • 165. Peman J, Salavert M, Canton E et al. Voriconazole in the management of nosocomial invasive fungal infections. Ther. Clin. Risk Manag. 2(2), 129–158 (2006).
    • 166. Greer ND. Posaconazole (Noxafil): a new triazole antifungal agent. Proc. (Bayl. Univ. Med. Cent.) 20(2), 188–196 (2007).
    • 167. Stone EA, Fung HB, Kirschenbaum HL. Caspofungin: an echinocandin antifungal agent. Clin. Ther. 24(3), 351–377; discussion 329 (2002).
    • 168. Parish LC, Parish JL, Routh HB et al. A randomized, double-blind, vehicle-controlled efficacy and safety study of naftifine 2% cream in the treatment of tinea pedis. J. Drugs Dermatol. 10(11), 1282–1288 (2011).
    • 169. Mikailov A, Cohen J, Joyce C, Mostaghimi A. Cost–effectiveness of confirmatory testing before treatment of onychomycosis. JAMA Dermatol. 152(3), 276–281 (2016).
    • 170. Lipner SR, Joseph WS, Vlahovic TC et al. Therapeutic recommendations for the treatment of toenail onychomycosis in the US. J. Drugs Dermatol. 20(10), 1076–1084 (2021).