We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Systems biology of disease tolerance to malaria

    Maria CM Toméi

    Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, Brazil

    ,
    Nágila I Silva

    Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, Brazil

    ,
    Anne CG Almeida

    Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, Brazil

    Gerência de Malária, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, 69040-000, Manaus, Brazil

    &
    Luiz G Gardinassi

    *Author for correspondence:

    E-mail Address: luizgardinassi@ufg.br

    Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, Brazil

    Published Online:https://doi.org/10.2217/fmb-2022-0261
    Free first page

    References

    • 1. Carter R, Mendis KN. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15(4), 564–594 (2002).
    • 2. de Jong SE, van Unen V, Manurung MD et al. Systems analysis and controlled malaria infection in Europeans and Africans elucidate naturally acquired immunity. Nat. Immunol. 22(5), 654–665 (2021).
    • 3. Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5(3), 340–343 (1999).
    • 4. Tran TM, Guha R, Portugal S et al. A molecular signature in blood reveals a role for p53 in regulating malaria-induced inflammation. Immunity 51(4), 750–765; e10 (2019).
    • 5. Studniberg SI, Ioannidis LJ, Utami RAS et al. Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol. Syst. Biol. 18(4), e10824 (2022).
    • 6. Nahrendorf W, Ivens A, Spence PJ. Inducible mechanisms of disease tolerance provide an alternative strategy of acquired immunity to malaria. eLife 10, e63838 (2021).
    • 7. Gozzelino R, Andrade BB, Larsen R et al. Metabolic adaptation to tissue iron overload confers tolerance to malaria. Cell Host Microbe 12(5), 693–704 (2012).
    • 8. Ramos S, Carlos AR, Sundaram B et al. Renal control of disease tolerance to malaria. Proc. Natl Acad. Sci. USA 116(12), 5681–5686 (2019).
    • 9. Wang A, Huen SC, Luan HH et al. Glucose metabolism mediates disease tolerance in cerebral malaria. Proc. Natl Acad. Sci. USA 115(43), 11042–11047 (2018).
    • 10. Cumnock K, Gupta AS, Lissner M, Chevee V, Davis NM, Schneider DS. Host energy source is important for disease tolerance to malaria. Curr. Biol. 28(10), 1635–1642; e3 (2018).
    • 11. Rodriguez-Muñoz D, Sánchez Á, Pérez-Benavente S et al. Hypothyroidism confers tolerance to cerebral malaria. Sci. Adv. 8(14), eabj7110 (2022).
    • 12. Vandermosten L, Pham T-T, Knoops S et al. Adrenal hormones mediate disease tolerance in malaria. Nat. Commun. 9(1), 4525 (2018).
    • 13. Gordon EB, Hart GT, Tran TM et al. Targeting glutamine metabolism rescues mice from late-stage cerebral malaria. Proc. Natl Acad. Sci. USA 112(42), 13075–13080 (2015).
    • 14. Mejia P, Treviño-Villarreal JH, Hine C et al. Dietary restriction protects against experimental cerebral malaria via leptin modulation and T-cell mTORC1 suppression. Nat. Commun. 6(1), 6050 (2015).
    • 15. Jagannathan P, Kim CC, Greenhouse B et al. Loss and dysfunction of Vδ2+ γδ T cells are associated with clinical tolerance to malaria. Sci. Transl. Med. 6(251), 251ra117 (2014).
    • 16. Lautenbach MJ, Yman V, Silva CS et al. Systems analysis shows a role of cytophilic antibodies in shaping innate tolerance to malaria. Cell Rep. 39(3), 110709 (2022).
    • 17. Portugal S, Moebius J, Skinner J et al. Exposure-dependent control of malaria-induced inflammation in children. PLoS Pathog. 10(4), e1004079 (2014).
    • 18. Guha R, Mathioudaki A, Doumbo S et al. Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype. PLoS Pathog. 17(4), e1009430 (2021).
    • 19. Gardinassi LG, Arévalo-Herrera M, Herrera S et al. Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox. Biol. 17, 158–170 (2018).
    • 20. Vinhaes CL, Carmo TA, Queiroz ATL et al. Dissecting disease tolerance in Plasmodium vivax malaria using the systemic degree of inflammatory perturbation. PLoS Negl. Trop. Dis. 15(11), e0009886 (2021).