We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Activity of amlodipine against Staphylococcus aureus: association with oxacillin and mechanism of action

    Amanda D Barbosa

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    ,
    Lívia GAV Sá

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    Centro Universitário Christus, Fortaleza, Ceará, Brasil

    ,
    João BA Neto

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    Centro Universitário Christus, Fortaleza, Ceará, Brasil

    ,
    Daniel S Rodrigues

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    ,
    Vitória PF Cabral

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    ,
    Lara EA Moreira

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    ,
    Igor G Aguiar

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    ,
    Hélcio S Santos

    Centro de Ciências Exatas e Tecnologia, Universidade Estadual do Vale do Acaraú, Sobral, Ceará, Brasil

    ,
    Bruno C Cavalcanti

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    ,
    Emmanuel S Marinho

    Departamento de Química, Grupo de Química Teórica e Eletroquímica (GQTE), Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, Brasil

    ,
    Jacilene Silva

    Departamento de Química, Grupo de Química Teórica e Eletroquímica (GQTE), Universidade Estadual do Ceará, Limoeiro do Norte, Ceará, Brasil

    ,
    Hemerson IF Magalhães

    Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brasil

    ,
    Manoel O Moraes

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    ,
    Hélio VN Júnior

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    &
    Cecília R Silva

    *Author for correspondence: Tel.: +55 853 366 8274;

    E-mail Address: cecilia@ufc.br

    Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Laboratório de Bioprospecção em Moléculas Antimicrobianas (LABIMAN), Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-370 Se você possui [Consulta-Q4: (PROD) para

    Centro de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil, CEP: 60.430-275.

    Published Online:https://doi.org/10.2217/fmb-2022-0230

    Aim: This study was designed to evaluate the in vitro antimicrobial activity of amlodipine against Staphylococcus aureus strains. Materials & methods: The antimicrobial activity of amlodipine was evaluated by the broth microdilution method and its interaction with oxacillin was evaluated by checkerboard assay. The possible mechanism of action was evaluated by flow cytometry and molecular docking techniques. Results: Amlodipine showed activity against S. aureus between 64 and 128 μg/ml, in addition to showing synergism in approximately 58% of the strains used. Amlodipine also showed good activity against forming and mature biofilms. The possible mechanism of action may be attributed to its ability to lead to cell death. Conclusion: Amlodipine has antibacterial activity against S. aureus.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. WHO publishes list of bacteria for which new antibiotics are urgently needed. www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
    • 2. Diekema DJ, Pfaller MA, Shortridge D, Zervos M, Jones RN. Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis. 6(Suppl. 1), S47–S53 (2019).
    • 3. Horváth A, Dobay O, Sahin-Tóth J et al. Characterisation of antibiotic resistance, virulence, clonality and mortality in MRSA and MSSA bloodstream infections at a tertiary-level hospital in Hungary: a 6-year retrospective study. Ann. Clin. Microbiol. Antimicrob. 19(1), 17 (2020).
    • 4. Mama OM, Aspiroz C, Lozano C et al. Penicillin susceptibility among invasive MSSA infections: a multicentre study in 16 Spanish hospitals. J. Antimicrob. Chemother. 76(10), 2519–2527 (2021).
    • 5. Rozgonyi F, Kocsis E, Kristóf K, Nagy K. Is MRSA more virulent than MSSA? Clin. Microbiol. Infect. 13(9), 843–845 (2007).
    • 6. Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 31(4), e00020–18 (2018).
    • 7. Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell Infect. Microbiol. 4, 178 (2014).
    • 8. Escolà-Vergé L, Los-Arcos I, Almirante B. New antibiotics for the treatment of infections by multidrug-resistant microorganisms. Med. Clin. (Barc.) 154(9), 351–357 (2020).
    • 9. Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 4(4), 565–577 (2019).
    • 10. Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58(3), 621–681 (2006).
    • 11. Bulsara KG, Cassagnol M. Amlodipine (2020). www.ncbi.nlm.nih.gov/books/NBK519508/
    • 12. Homa M, Hegedus K, Fülöp Á et al. In vitro activity of calcium channel blockers in combination with conventional antifungal agents against clinically important filamentous fungi. Acta Biol. Hung. 68(3), 334–344 (2017).
    • 13. Liu S, Yue L, Gu W, Li X, Zhang L, Sun S. Synergistic effect of fluconazole and calcium channel blockers against resistant Candida albicans. PLOS ONE 11(3), e015085 (2016).
    • 14. Mazumdar K, Asok Kumar K, Dutta NK. Potential role of the cardiovascular non-antibiotic (helper compound) amlodipine in the treatment of microbial infections: scope and hope for the future. Int. J. Antimicrob. Agents 36(4), 295–302 (2010). •• According to the authors, amlodipine is the most promising nonantibiotic antimicrobial cardiovascular drug. This study suggested that the doses of amlodipine needed to effectively treat an infection in vivo may be significantly lower than the doses used in vitro to inhibit bacterial growth.
    • 15. Kruszewska H, Zareba T, Tyski S. Estimation of antimicrobial activity of selected non-antibiotic products. Acta Pol. Pharm. 63(5), 457–460 (2006).
    • 16. M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard - Tenth Edition (2015). https://clsi.org/media/1928/m07ed11_sample.pdf
    • 17. Batista de Andrade Neto J, Alexandre Josino MA, Rocha da Silva C et al. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb. Pathog. 127, 335–340 (2019).
    • 18. Das B, Mandal D, Dash SK et al. Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infect. Dis. 9, PMC4756864 (2016).
    • 19. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52(1), 1 (2003).
    • 20. Jorge P, Grzywacz D, Kamysz W, Lourenço A, Pereira MO. Searching for new strategies against biofilm infections: colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms. PLOS ONE 12(3), e0174654 (2017).
    • 21. Brambilla LZS, Endo EH, Cortez DAG, Filho BPD. Anti-biofilm activity against Staphylococcus aureus MRSA and MSSA of neolignans and extract of Piper regnellii. Rev. Bras. Farmacogn. 27(1), 112–117 (2017).
    • 22. Costa EM, Silva S, Madureira AR, Cardelle-Cobas A, Tavaria FK, Pintado MM. A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro. Carbohydr. Polym. 101(1), 1081–1086 (2014).
    • 23. Brambilla LZS, Endo EH, Cortez DAG, Filho BPD. Anti-biofilm activity against Staphylococcus aureus MRSA and MSSA of neolignans and extract of Piper regnellii. Rev. Bras. Farmacogn. 27(1), 112–117 (2017).
    • 24. do Av Sá LG, da Silva CR, de A Neto JB et al. Etomidate inhibits the growth of MRSA and exhibits synergism with oxacillin. Future Microbiol. 15(17), 1611–1619 (2020).
    • 25. Silva F, Ferreira S, Queiroz JA, Domingues FC. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J. Med. Microbiol. 60(Pt 10), 1479–1486 (2011).
    • 26. Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 71(8), 592–598 (2007).
    • 27. Neto JBA, da Silva CR, Nascimento FBSA et al. Screening of antimicrobial metabolite yeast isolates derived biome Ceará against pathogenic bacteria, including MRSA: antibacterial activity and mode of action evaluated by flow cytometry. Int. J. Curr. Microbiol. App. Sci. 4(5), 459–472 (2015).
    • 28. Neto JBA, da Silva CR, Neta MAS et al. Antifungal activity of naphthoquinoidal compounds in vitro against fluconazole-resistant strains of different Candida species: a special emphasis on mechanisms of action on Candida tropicalis. PLOS ONE 9(5), e93698 (2014).
    • 29. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 46(5), 561–572 (2012).
    • 30. MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. ChemAxon. https://chemaxon.com/presentation/marvinsketch-and-marvinview-molecule-applets-for-the-world-wide-web
    • 31. Marvin. ChemAxon. https://chemaxon.com/products/marvin
    • 32. Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(8), 1–17 (2012).
    • 33. Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF et al. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb. Pathog. 155, 104892 (2021).
    • 34. Foletti D, Strop P, Shaughnessy L et al. Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus α-hemolysin. J. Mol. Biol. 425(10), 1641–1654 (2013).
    • 35. Caballero AR, Foletti DL, Bierdeman MA et al. Effectiveness of alpha-toxin Fab monoclonal antibody therapy in limiting the pathology of Staphylococcus aureus keratitis. Ocul. Immunol. Inflamm. 23(4), 297–303 (2015).
    • 36. Yan J, Zhang G, Pan J, Wang Y. α-Glucosidase inhibition by luteolin: kinetics, interaction and molecular docking. Int. J. Biol. Macromol. 64, 213–223 (2014).
    • 37. Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. https://zdoc.pub/using-autodock-4-and-autodock-vina-with-autodocktools-a-tuto.html
    • 38. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31(2), 455 (2010).
    • 39. Marinho EM, Batista de Andrade Neto J, Silva J et al. Virtual screening based on molecular docking of possible inhibitors of COVID-19 main protease. Microb. Pathog. 148, 104365 (2020).
    • 40. BIOVIA Discovery Studio–BIOVIA–Dassault Systèmes®. www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/
    • 41. Pettersen EF, Goddard TD, Huang CC et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).
    • 42. Yusuf D, Davis AM, Kleywegt GJ, Schmitt S. An alternative method for the evaluation of docking performance: RSR vs RMSD. J. Chem. Inf. Model 48(7), 1411–1422 (2008).
    • 43. Shityakov S, Förster C. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv. Appl. Bioinform. Chem. 7(1), 23 (2014).
    • 44. Imberty A, Hardman KD, Carver JP, Perez S. Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1(6), 631–642 (1991).
    • 45. Berdigaliyev N, Aljofan M. An overview of drug discovery and development. Future Med. Chem. 12(10), 939–947 (2020).
    • 46. VanZwieten PA.Amlodipine: an overview of its pharmacodynamic and pharmacokinetic properties.17(9 Suppl. 3), III3–III6 (1994). https://pubmed.ncbi.nlm.nih.gov/9156957/
    • 47. Kim BH, Kim JR, Kim MG et al. Pharmacodynamic (hemodynamic) and pharmacokinetic comparisons of S-amlodipine gentisate and racemate amlodipine besylate in healthy Korean male volunteers: two double-blind, randomized, two-period, two-treatment, two-sequence, double-dummy, single-dose crossover studies. Clin. Ther. 32(1), 193–205 (2010).
    • 48. Boyd NK, Lee GC, Teng C, Frei CR. In vitro activity of non-antibiotic drugs against Staphylococcus aureus clinical strains. J. Glob. Antimicrob. Resist. 27, 167–171 (2021). •• Boyd et al. evaluate the minimum inhibitory and bactericidal concentrations of amlodipine against clinical strains of S. aureus and discuss the only metric for evaluating adequate drug exposure in a treatment.
    • 49. Wang Y, Li X, Wang D, Sun S, Lu C. In vitro interactions of ambroxol hydrochloride or amlodipine in combination with antibacterial agents against carbapenem-resistant Acinetobacter baumannii. Lett. Appl. Microbiol. 70(3), 189–195 (2020).
    • 50. Yi Z. Evaluation of amlodipine inhibition and antimicrobial effects. Int. J. Pharm. Chem. 5(1), 12 (2019). • Yi shows, from enzymatic assays and bacterial tests, that amlodipine may serve as an auxiliary drug, considering that one of the mechanisms presented is the inhibition of β-lactamase, showing the synergistic activity of amlodipine with other beta-lactams.
    • 51. Morales G, Paredes A, Sierra P, Loyola LA. Antimicrobial activity of three Baccharis species used in the traditional medicine of Northern Chile. Molecules 13(4), 790 (2008).
    • 52. Oyama T, Miyazaki M, Yoshimura M, Takata T, Ohjimi H, Jimi S. Biofilm-forming methicillin-resistant Staphylococcus aureus survive in Kupffer cells and exhibit high virulence in mice. Toxins (Basel) 8(7), 198 (2016).
    • 53. Gupta P, Chanda R, Rai N, Kataria VK, Kumar N. Antihypertensive, amlodipine besilate inhibits growth and biofilm of human fungal pathogen Candida. Assay Drug Dev. Technol. 14(5), 291–297 (2016).
    • 54. Elkhatib WF, Haynes VL, Noreddin AM. Microbiological appraisal of levofloxacin activity against Pseudomonas aeruginosa biofilm in combination with different calcium channel blockers in vitro. J. Chemother. 21(2), 135–143 (2009).
    • 55. Pallen MJ. Time to recognise that mitochondria are bacteria? Trends Microbiol. 19(2), 58–64 (2011).
    • 56. Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim. Biophys. Acta 1400(1–3), 29–43 (1998).
    • 57. Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol. 2(1), 40 (2009).
    • 58. Elkhatib WF, Haynes VL, Noreddin AM. Microbiological appraisal of levofloxacin activity against Pseudomonas aeruginosa biofilm in combination with different calcium channel blockers in vitro. J. Chemother. 21(2), 135–143 (2013).