We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Analysis of the antifungal potential of Macrocybe titans extract against Candida albicans

    Fernanda CBN Pereira

    Multicentric Graduate Program in Biochemistry & Molecular Biology, Federal University of Paraná, Palotina, Paraná, Brazil. Zip Code: 85950-000.

    ,
    Gabrielle C Peiter

    Multicentric Graduate Program in Biochemistry & Molecular Biology, Federal University of Paraná, Palotina, Paraná, Brazil. Zip Code: 85950-000.

    ,
    Vivian EMS Justo

    Department of Biosciences, Federal University of Paraná, Palotina, Paraná, Brazil. Zip Code: 85950-000.

    ,
    Gabrieli M Huff

    Department of Biosciences, Federal University of Paraná, Palotina, Paraná, Brazil. Zip Code: 85950-000.

    ,
    Pollyanna CV Conrado

    Department of Clinical Analysis & Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil. Zip Code: 87020-900

    ,
    Mauro AP da Silva

    Department of Biosciences, Federal University of Paraná, Palotina, Paraná, Brazil. Zip Code: 85950-000.

    ,
    Patrícia S Bonfim-Mendonça

    Department of Clinical Analysis & Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil. Zip Code: 87020-900

    ,
    Terezinha IE Svidzinski

    Department of Clinical Analysis & Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil. Zip Code: 87020-900

    ,
    Fabio R Rosado

    Department of Biosciences, Federal University of Paraná, Palotina, Paraná, Brazil. Zip Code: 85950-000.

    &
    Adriana Fiorini

    *Author for correspondence: Tel.: +55 443 211 8529;

    E-mail Address: drifiorini@gmail.com

    Department of Biosciences, Federal University of Paraná, Palotina, Paraná, Brazil. Zip Code: 85950-000.

    Published Online:https://doi.org/10.2217/fmb-2022-0214

    Aim: To investigate the antifungal potential of Macrocybe titans extracts against Candida albicans. Material & methods: Extracts were obtained as aqueous (EfraMat-22 and EfraMat-45) and methanolic/ethyl acetate fractions. Results: Broth microdilution and disk diffusion assays showed that EfraMat-45 provided the best results in terms of minimum inhibitory concentration. Scanning electron microscopy analysis revealed morphological changes and slight damage on the surfaces of cells exposed to EfraMat-45 at the MIC. Fluorescence microscopy analysis of the yeasts showed cell elongation. EfraMat-45 presented high levels of phenolic compounds and flavonoids, high antioxidant activity and absence of in vitro cytotoxicity. Conclusion: The results indicated that the aqueous extract of M. titans is highly promising as an antifungal agent.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Martin SW, Douglas LM, Konopka JB. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Eukaryot. Cell 4(7), 1191–1202 (2005). • Discusses the morphogenesis regulation of Candida albicans, and how the changes in morphogenesis are related with virulence.
    • 2. Nodari RO, Guerra MP. Implicações dos transgênicos na sustentabilidade ambiental e agrícola. Hist. Cienc. Saude Manguinhos 7(2), 481–491 (2000).
    • 3. Liu X, Ma Z, Zhang J, Yang L. Antifungal compounds against Candida infections from traditional chinese medicine. Biomed. Res. Int. 2017, 1–12 (2017).
    • 4. Zjawiony JK. Biologically active compounds from Aphyllophorales (Polypore) fungi. J. Nat. Prod. 67(2), 300–310 (2004).
    • 5. Sridhar S, Sivaprakasam E, Balakumar R, Kavitha D. Evaluation of antibacterial and antifungal of Ganoderma lucidum (Curtis) P. Karst fruit bodies extracts. World J. Sci. Technol. 1, 8–11 (2011).
    • 6. Breene WM. Nutritional and medicinal value of specialty mushrooms. J. Food Prot. 53(10), 883–894 (1990).
    • 7. Chang ST, Buswell JA, Miles PG. Genetics and breeding of edible mushrooms. Routledge, London, UK (1993).
    • 8. Jong SC, Birmingham JM. Medicinal and therapeutic value of the shiitake mushroom. Adv. Appl. Microbiol. 39, 153–184 (1993).
    • 9. Giri S, Biswas G, Pradhan P et al. Antimicrobial activities of basidiocarps of wild edible mushrooms of West Bengal, India. Int. J. Pharmtech Res. 4(4), 1554–1560 (2012).
    • 10. Vetchinkina E, Loshchinina E, Kupryashina M et al. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ 6, e5237 (2018).
    • 11. Pegler DN, Lodge DJ, Nakasone KK. The pantropical genus Macrocybe gen. nov. Mycologia 90(3), 494–504 (1998).
    • 12. Wisniewski AC, de Almeida MAV, Palmas MB, Tavares LBB. Produção de enzimas amilolíticas por Macrocybe titans em resíduo do processamento de cerveja. Rev. Bras. Biocienc. 8(3), 185–293 (2010).
    • 13. Milhorini SDS, Smiderle FR, Biscaia SMP et al. Fucogalactan from the giant mushroom Macrocybe titans inhibits melanoma cells migration. Carbohydr. Polym. 190, 50–56 (2018). •• The first report of the chemical structure of a M. titans fucogalactan and its role in melanoma cell migration.
    • 14. Khatua S, Acharya K. Antioxidant and antimicrobial potentiality of quantitatively analysed ethanol extract from Macrocybe crassa. Int. J. Pharm. Sci. Res. 29(2), 53–60 (2014). • Ethanolic extract from M. crassa, a species closely related to M. titans, showed antioxidant and antimicrobial effects.
    • 15. Mirhendi H, Makimura K, Khoramizadeh M, Yamaguchi H. A one-enzyme PCR-RFLP assay for identification of six medically important Candida species. Nihon Ishinkin Gakkai Zasshi 47(3), 225–229 (2006).
    • 16. Godinho VM, Furbino LE, Santiago IF et al. Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J. 7(7), 1434–1451 (2013).
    • 17. Kumar S, Stecher G, Li M et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).
    • 18. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI document M27-A3. Clinical and Laboratory Standards Institute, PA, USA (2008).
    • 19. Clinical and Laboratory Standards Institute. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. CLSI document M44-A2. Clinical and Laboratory Standards Institute, PA, USA (2018).
    • 20. Gow NAR, van de Veerdonk FL, Brown AJP, Netea MG. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10(2), 112–122 (2011).
    • 21. de Souza Paccola EA, Maki CS, de Nobrega GMA, Paccola-Meirelles LD. Antagonistic effect of edible mushroom extract on Candida> albicans growth. Braz. J. Microbiol. 32(3), 176–178 (2001). • Antagonistic effect of mushroom extracts was tested for their potential to inhibit the in vitro growth of the pathogenic yeast Candida albicans.
    • 22. Banlangsawan N, Sripanidkulchai B, Sanoamuang N. Investigation of antioxidative, antityrosinase and cytotoxic effects of extract of irradiated oyster mushroom. Songklanakarin J. Sci. Technol. 38(1), 31–39 (2016).
    • 23. Taofiq O, Rodrigues F, Barros L et al. Mushroom ethanolic extracts as cosmeceuticals ingredients: safety and ex vivo skin permeation studies. Food Chem. Toxicol. 127, 228–236 (2019).
    • 24. Younis AM, Yosri M, Stewart JK. In vitro evaluation of pleiotropic properties of wild mushroom Laetiporus sulphureus. Ann. Agric. Sci. 64(1), 79–87 (2019).
    • 25. Yilmaz Y, Toledo RT. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compost. Anal. 19(1), 41–48 (2006).
    • 26. Rockenbach II, da Silva GL, Rodrigues E et al. Influência do solvente no conteúdo total de polifenóis, antocianinas e atividade antioxidante de extratos de bagaço de uva (Vitis vinifera) variedades Tannat e Ancelota. Ciencia Tecnol. Alime. 28, 238–244 (2008).
    • 27. Acharya K, Khatua S, Sahid S. Pharmacognostic standardization of Macrocybe crassa: an imminent medicinal mushroom. Res. J. Pharm. Tech. 8(7), 860–866 (2015).
    • 28. Boroski M, Visentainer JV, Cottica SM, Morais DR. Antioxidantes: Princípios e Métodos Analíticos. Appris, Parana, Brazil (2015).
    • 29. Reis FS, Martins A, Barros L, Ferreira ICFR. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 50(5), 1201–1207 (2012).
    • 30. Al-Hedaithy SSA, Fotedar R. Recovery and studies on chlamydospore-negative Candida albicans isolated from clinical specimens. Med. Mycol. 40(3), 301–306 (2002).
    • 31. Al Mosaid A, Sullivan DJ, Coleman DC. Differentiation of Candida dubliniensis from Candida albicans on Pal's agar. J. Clin. Microbiol. 41(10), 4787–4789 (2003).
    • 32. de Castro RD, de Oliveira Lima E, de Almeida Freires I, Alves LA. Combined effect of Cinnamomum zeylanicum blume essential oil and nystatin on Candida albicans growth and micromorphology. Rev. Ciênc. Méd. Biol. 12(2), 149–156 (2013). • Considered of interest due to the information related to the growth and micromorphology of C. albicans.
    • 33. Xu H, Nobile CJ, Dongari-Bagtzoglou A. Glucanase induces filamentation of the fungal pathogen Candida albicans. PLOS ONE 8(5), e63736 (2013). •• Filamentation on Candida albicans induced by glucanase was considered of considerable interest because it is related with virulence of the fungal pathogen.
    • 34. Shen HS, Shao S, Chen JC, Zhou T. Antimicrobials from mushrooms for assuring food safety. Compr. Rev. Food Sci. Food Saf. 16(2), 316–329 (2017).
    • 35. Matijašević D, Pantić M, Rašković B et al. The antibacterial activity of Coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front. Microbiol. 7, 1–15 (2016).
    • 36. Yoo Y, Choi HT. Antifungal chitinase against human pathogenic yeasts from Coprinellus congregatus. J. Microbiol. 52(5), 441–443 (2014).
    • 37. Gil-Bona A, Reales-Calderon JA, Parra-Giraldo CM et al. The cell wall protein Ecm33 of Candida albicans is involved in chronological life span, morphogenesis, cell wall regeneration, stress tolerance, and host–cell interaction. Front. Microbiol. 7, 64 (2016).
    • 38. Fiołka MJ, Czaplewska P, Macur K et al. Anti-Candida albicans effect of the protein-carbohydrate fraction obtained from the coelomic fluid of earthworm Dendrobaena veneta. PLOS ONE 14(3), e0212869 (2019).