We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb-2022-0209

Aims: Numerous beneficial effects of vitamin C (ascorbic acid) supplementation have been reported in the literature. However, data on its effects toward the gut microbiome are limited. We assessed the effect of vitamin C supplementation on the abundance of beneficial bacterial species in the gut microbiome. Materials and methods: Stool samples were analyzed for relative abundance of gut microbiome bacteria using next-generation sequencing-based profiling and metagenomic shotgun analysis. Results: Supplementation with vitamin C increased the abundance of bacteria of the genus Bifidobacterium (p = 0.0001) and affected various species. Conclusion: The beneficial effects of vitamin C supplementation may be attributed to modulation of the gut microbiome and the consequent health benefits thereof.

Plain language summary

Vitamin C, also known as ascorbic acid, is used as a supplement for fighting infectious disorders. Many disorders, including COVID-19 and cancer, harmfully disrupt the levels of bacteria that naturally reside in the gut, which may contribute to symptoms. The aim of the study was to understand whether high-dose vitamin C could improve the types of bacteria in the human gut. To do this we characterized the gut bacteria before and after 23 individuals took vitamin C, as prescribed by their respective physicians. We observed that vitamin C increased levels of a gut bacterium called Bifidobacterium which has positive health benefits, including fighting infection. This study suggests the possibility that vitamin C could be successful for improving infection outcomes, possibly even COVID-19, partially because it improves the gut bacteria present.

Tweetable abstract

Patients receiving ascorbic acid supplementation had increased abundance of Bifidobacterium in their gut microbiome, which may help to explain some of the apparent health benefits and antiviral properties of vitamin C.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1. Pauling L. Vitamin C and common cold. JAMA 216(2), 332–332 (1971).
  • 2. Pauling L. Respect for vitamin C. Science 254(5039), 1712 (1991). • Fundamental studies showing the roles of vitamin C.
  • 3. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Systematic Rev. (2013). https://www.cochrane.org/CD000980/ARI_vitamin-c-for-preventing-and-treating-the-common-cold
  • 4. Ran L, Zhao W, Wang J et al. Extra dose of vitamin C based on a daily supplementation shortens the common cold: a meta-analysis of 9 randomized controlled trials. Biomed Res Int. doi:10.1155/2018/1837634 (2018) (Epub ahead of print).
  • 5. Anderson TWRDB, Beaton GH. Vitamin C and the common cold: a double-blind trial. Can Med Assoc J. l107(6), 503–508 (1972).
  • 6. Coulehan JL, Eberhard S, Kapner L, Taylor F, Rogers K, Garry P. Vitamin C and acute illness in Navajo school children. N. Engl. J. Med. 295(18), 973–977 (1976).
  • 7. Sasazuki S, Sasaki S, Tsubono Y, Okubo S, Hayashi M, Tsugane S. Effect of vitamin C on common cold: randomized controlled trial. Eur. J. Clin. Nutr. 60(1), 9–17 (2006).
  • 8. Anderson TW, Suranyi G, Beaton GH. The effect on winter illness of large doses of vitamin C. Can. Med. Assoc. J. 111, 31–36 (1974).
  • 9. Bancalari A, Seguel, Neira C, Ruiz FI, Calvo C. [Prophylactic value of vitamin C in acute respiratory tract infections in schoolchildren] Rev. Med. Chil. 112(9), 871–876 (1984).
  • 10. Briggs M. Vitamin C and infectious diesease: a review of the literature and the results of a randomized, double-blind, prospective study over 8 years. In recent Vitamin Research 39–82 (1984). https://www.taylorfrancis.com/books/edit/10.1201/9780203710562/recent-vitamin-research-1984-briggs-michael?refId=052c615e-cb54-4e84-a40e-347422f4d9b9&context=ubx
  • 11. Carr AB, Einstein R, Lai LYC, Martin NG, Starmer GA. Vitamin C and the common cold: a second MZ co-twin control study. Acta Genet. Med. Gemellol. 30(4), 249–255 (1981).
  • 12. Charleston SS, Clegg KM. Ascorbic acid and the common cold. Lancet 1(7765), 1401–1402 (1972).
  • 13. Clegg KM, Macdonald JM. L-Ascorbic acid and D-isoascorbic acid in a common cold survey. Am. J. Clin. Nutr. 28(9), 973–976 (1975).
  • 14. Elliott B. Ascorbic acid: efficacy in the prevention of symptoms of respiratory infection on a Polaris submarine. Int. Res. Commun. Syst./Med. Sci. 1(3), 12 (1973).
  • 15. Elwood PC, Lee HP, St Leger AS, Baird M, Howard AN. A randomized controlled trial of vitamin C in the prevention and amelioration of the common cold. Br. J. Prev. Soc. Med. 30(3), 193–196 (1976).
  • 16. Karlowski TR, Chalmers TC, Frenkel LD, Kapikian AZ, Lewis TL, Lynch JM. Ascorbic acid for the common cold: a prophylactic and therapeutic trial. JAMA 231(10), 1038–1042 (1975).
  • 17. Ludvigsson J, Olof Hansson L, Tibbling G. Vitamin C as a preventive medicine against common colds in children. Scand. J. Infect. Dis. 9(2), 91–98 (1977).
  • 18. K.A.Mink, E.C.Dick, Lance C Jennings. Amelioration of rhinovirus colds by vitamin C (ascorbic acid) supplementation. Medical Virology VII 241, 909–911 (1979).
  • 19. Pitt HA, Costrini AM. Vitamin C prophylaxis in marine recruits. JAMA 241(9), 908–911 (1979).
  • 20. Schwartz AR, Togo Y, Hornick RB, Tominaga S, Gleckman RA. Evaluation of the efficacy of ascorbic acid in prophylaxis of induced rhinovirus 44 infection in man. J. Infect. Dis. 128(4), 500–505 (1973).
  • 21. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20(4), 593–621 (2007).
  • 22. Spiers PS. On the prevention of the common cold: no help from vitamin C. Epidemiology 13(1), 4–5 (2002).
  • 23. Travica N, Ried K, Sali A, Scholey A, Hudson I, Pipingas A. Vitamin C status and cognitive function: a systematic review. Nutrients 9(9), 960 (2017).
  • 24. Mayland CR, Bennett MI, Allan K. Vitamin C deficiency in cancer patients. Palliat. Med. 19(1), 17–20 (2005).
  • 25. Tomasa-Irriguible TM, Bielsa-Berrocal L. COVID-19: up to 82% critically ill patients had low vitamin C values. Nutr. J. 20(1), 66 (2021).
  • 26. Rowe S, Carr AC. Global vitamin C status and prevalence of deficiency: a cause for concern? Nutrients 12(7), 2008 (2020).
  • 27. Schleicher RL, Carroll MD, Ford ES, Lacher DA. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 90(5), 1252–1263 (2009).
  • 28. Levine M, Conry-Cantilena C, Wang Y et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc. Natl Acad. Sci. USA 93(8), 3704–3709 (1996).
  • 29. Padayatty SJ, Levine M. New insights into the physiology and pharmacology of vitamin C. CMAJ 164(3), 353–355 (2001).
  • 30. Harper A, Vijayakumar V, Ouwehand AC et al. Viral infections, the microbiome, and probiotics. Front. Cell. Infect. Microbiol. 10, 596166 (2021).
  • 31. Menzies V, Jallo N, Kinser P et al. Shared symptoms and putative biological mechanisms in chronic liver disease: implications for biobehavioral research. Biol. Res. Nurs. 17(2), 222–229 (2015).
  • 32. Quigley EM, Monsour HP. Targeting the microbiota in the management of gastrointestinal and liver disease. Rev. Gastroenterol. Peru 33(2), 139–144 (2013).
  • 33. Gibson GR, Hutkins R, Sanders ME et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14(8), 491–502 (2017).
  • 34. Steinert RE, Lee YK, Sybesma W. Vitamins for the gut microbiome. Trends Mol. Med. 26(2), 137–140 (2020).
  • 35. Von Martels JZH, Bourgonje AR, Klaassen MaY et al. Riboflavin supplementation in patients with Crohn’s disease (the RISE-UP study). J. Crohns Colitis 14(5), 595–607 (2020).
  • 36. Schaffler H, Herlemann DP, Klinitzke P et al. Vitamin D administration leads to a shift of the intestinal bacterial composition in Crohn's disease patients, but not in healthy controls. J. Dig. Dis. 19(4), 225–234 (2018).
  • 37. Shang M, Sun J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr. Med. Chem. 24(9), 876–887 (2017).
  • 38. Cantorna MT, McDaniel K, Bora S, Chen J, James J. Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease. Exp. Biol. Med. 239(11), 1524–1530 (2014).
  • 39. Jostins L, Ripke S, Weersma RK et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422), 119–124 (2012).
  • 40. Wang J, Thingholm LB, Skieceviciene J et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48(11), 1396–1406 (2016).
  • 41. Hazan S, Stollman N, Bozkurt HS et al. Lost microbes of COVID-19: Bifidobacterium, Faecalibacterium depletion and decreased microbiome diversity associated with SARS-CoV-2 infection severity. BMJ Open Gastroenterol. 9(1), e000871 (2022).
  • 42. Howell MC, Green R, Mcgill AR, Dutta R, Mohapatra S, Mohapatra SS. SARS-CoV-2-Induced gut microbiome dysbiosis: implications for colorectal cancer. Cancers (Basel) 13(11), 2676 (2021).
  • 43. Hung YP, Lee CC, Lee JC, Tsai PJ, Ko WC. Gut dysbiosis during COVID-19 and potential effect of probiotics. Microorganisms 9(8), 1605 (2021).
  • 44. Yamamoto S, Saito M, Tamura A, Prawisuda D, Mizutani T, Yotsuyanagi H. The human microbiome and COVID-19: a systematic review. PLOS ONE 16(6), e0253293 (2021).
  • 45. Zuo T, Wu X, Wen W, Lan P. Gut microbiome alterations in COVID-19. Genomics Proteomics Bioinformatics 19(5), 679–688 (2021).
  • 46. Patterson T, Isales CM, Fulzele S. Low level of vitamin C and dysregulation of vitamin C transporter might be involved in the severity of COVID-19 infection. Aging Dis. 12(1), 14–26 (2021).
  • 47. Holford P, Carr AC, Zawari M, Vizcaychipi MP. Vitamin C intervention for critical COVID-19: a pragmatic review of the current level of evidence. Life (Basel) 11(11), 1166 (2021).
  • 48. Milani GP, Macchi M, Guz-Mark A. Vitamin C in the treatment of COVID-19. Nutrients 13(4), 1172 (2021).
  • 49. Colunga Biancatelli RML, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev. Anti Infect. Ther. 18(2), 99–101 (2020).
  • 50. Fiorino S, Gallo C, Zippi M et al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin. Exp. Res. 32(10), 2115–2131 (2020).
  • 51. Pham VT, Fehlbaum S, Seifert N et al. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome – a pilot study. Gut Microbes 13(1), 1–20 (2021).
  • 52. Rawat D, Roy A, Maitra S, Gulati A, Khanna P, Baidya DK. Vitamin C and COVID-19 treatment: a systematic review and meta-analysis of randomized controlled trials. Diabetes Metab. Syndr. 15(6), 102324 (2021).
  • 53. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17(4), 219–232 (2017).
  • 54. O’Callaghan A, Van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).
  • 55. Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and their molecular communication with the immune system. Front. Microbiol. 8, 2345 (2017). • Good review on the role of Bifidobacteria in immunity.
  • 56. Xu K, Cai H, Shen Y et al. [Management of corona virus disease-19 (COVID-19): the Zhejiang experience]. Zhejiang Da Xue Xue Bao Yi Xue Ban 49(1), 147–157 (2020).
  • 57. Yeoh YK, Zuo T, Lui GCY et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70(4), 698–706 (2021).
  • 58. Papoutsis A, Borody T, Dolai S et al. Detection of SARS-CoV-2 from patient fecal samples by whole genome sequencing. Gut Pathog. 13(1), 7 (2021).
  • 59. Wagner BD, Grunwald GK, Zerbe GO et al. On the use of diversity measures in longitudinal sequencing studies of microbial communities. Front. Microbiol. 9, 1037 (2018).
  • 60. Otten AT, Bourgonje AR, Peters V, Alizadeh BZ, Dijkstra G, Harmsen HJM. Vitamin C supplementation in healthy individuals leads to shifts of bacterial populations in the gut – a pilot study. Antioxidants (Basel) 10(8), 1278 (2021). •• This is the study closest to ours, with similar findings.
  • 61. Garaiova I, Muchová J, Nagyová Z et al. Probiotics and vitamin C for the prevention of respiratory tract infections in children attending preschool: a randomised controlled pilot study. Eur. J. Clin. Nutr. 69(3), 373–379 (2015).
  • 62. De Vrese M, Winkler P, Rautenberg P et al. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial. Clin. Nutr. 24(4), 481–491 (2005).
  • 63. King CH, Desai H, Sylvetsky AC et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PLOS ONE 14(9), e0206484 (2019).
  • 64. Xiao M, Xu P, Zhao J et al. Oxidative stress-related responses of Bifidobacterium longum subsp. longum BBMN68 at the proteomic level after exposure to oxygen. Microbiology 157(Pt 6), 1573–1588 (2011).
  • 65. Marras L, Caputo M, Bisicchia S et al. The role of Bifidobacteria in predictive and preventive medicine: a focus on eczema and hypercholesterolemia. Microorganisms 9(4), 836 (2021).
  • 66. Fukuda S, Toh H, Hase K et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331), 543–547 (2011).
  • 67. Yasui H, Kiyoshima J, Hori T, Shida K. Protection against influenza virus infection of mice fed Bifidobacterium breve YIT4064. Clin. Diagn. Lab. Immunol. 6(2), 186–192 (1999).
  • 68. Mahooti M, Abdolalipour E, Salehzadeh A, Mohebbi SR, Gorji A, Ghaemi A. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World J. Microbiol. Biotechnol. 35(6), 91 (2019).
  • 69. Zhang Q, Hu J, Feng JW et al. Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biol. 21(1), 99 (2020).
  • 70. Namba K, Hatano M, Yaeshima T, Takase M, Suzuki K. Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci. Biotechnol. Biochem. 74(5), 939–945 (2010).
  • 71. Darbandi A, Asadi A, Ghanavati R et al. The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: systemic review 2010–20. Int. J. Infect. Dis. 105, 91–104 (2021).
  • 72. Kurian SJ, Unnikrishnan MK, Miraj SS et al. Probiotics in prevention and treatment of COVID-19: current perspective and future prospects. Arch. Med. Res. 52(6), 582–594 (2021).
  • 73. Olaimat AN, Aolymat I, Al-Holy M et al. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. NPJ Sci. Food 4, 17 (2020).
  • 74. Shu G, Yang H, Tao Q, He C. Effect of ascorbic acid and cysteine hydrochloride on growth of Bifidobacterium bifidum 1, 2. Adv. J. Food Sci.Technol. 5(6), 678–681 (2013). •• This study has similar findings to ours, in an in vitro model system.
  • 75. Khan MT, Browne WR, Van Dijl JM, Harmsen HJM. How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? Antioxid. Redox Signal. 17(10), 1433–1440 (2012).
  • 76. Khan MT, Duncan SH, Stams AJM, Van Dijl JM, Flint HJ, Harmsen HJM. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J. 6(8), 1578–1585 (2012).
  • 77. Million M, Raoult D. Linking gut redox to human microbiome. Hum. Microbiome J. 10, 27–32 (2018).
  • 78. Million M, Tidjani Alou M, Khelaifia S et al. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci. Rep. 6, 26051 (.2016).
  • 79. Sokol H, Pigneur B, Watterlot L et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105(43), 16731–16736 (2008).
  • 80. Parrow NL, Leshin JA, Levine M. Parenteral ascorbate as a cancer therapeutic: a reassessment based on pharmacokinetics. Antioxid. Redox Signal. 19(17), 2141–2156 (2013).
  • 81. Padayatty SJ, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 22(6), 463–493 (2016).
  • 82. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The controversial role of human gut Lachnospiraceae. Microorganisms 8(4), 573 (2020).
  • 83. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279(1), 70–89 (2017).
  • 84. Hoffer LJ, Levine M, Assouline S et al. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann. Oncol. 19(11), 1969–1974 (2008).
  • 85. Padayatty SJ, Sun H, Wang Y et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann. Intern. Med. 140(7), 533–537 (2004).
  • 86. Graumlich JF, Ludden TM, Conry-Cantilena C, Cantilena LR Jr, Wang Y, Levine M. Pharmacokinetic model of ascorbic acid in healthy male volunteers during depletion and repletion. Pharm. Res. 14(9), 1133–1139 (1997).
  • 87. Hoffman FA. Micronutrient requirements of cancer patients. Cancer 55(Suppl. 1), 295–300 (1985).
  • 88. Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep. 8(6), 365–370 (2003).
  • 89. Mikirova N, Casciari J, Riordan N, Hunninghake R. Clinical experience with intravenous administration of ascorbic acid: achievable levels in blood for different states of inflammation and disease in cancer patients. J. Transl. Med. 11, 191 (2013).
  • 90. Mikirova N, Casciari J, Rogers A, Taylor P. Effect of high-dose intravenous vitamin C on inflammation in cancer patients. J. Transl. Med. 10, 189 (2012).
  • 91. Lee T, Clavel T, Smirnov K et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 66(5), 863–871 (2017).
  • 92. Liu H, Wu W, Luo Y. Oral and intravenous iron treatment alter the gut microbiome differentially in dialysis patients. Int. Urol. Nephrol. doi:10.1007/s11255-022-03377-0 (.2022) (Epub ahead of print).
  • 93. Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11( 1), 3030 (2021).