We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Active Cu(II), Mn(II) and Ag(I) 1,10-phenanthroline/1,10-phenanthroline-5,6-dione/dicarboxylate chelates: effects on Scedosporium

    Thaís P Mello

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    ,
    Ana Carolina Aor

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    ,
    Iuri C Barcellos

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    ,
    Matheus M Pereira

    Chemical Engineering Processes and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal

    ,
    Malachy McCann

    Chemistry Department, Maynooth University, National University of Ireland, Maynooth, Ireland

    ,
    Michael Devereux

    The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin, Ireland

    ,
    Marta H Branquinha

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    Rede Micologia RJ and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil

    &
    André LS Santos

    *Author for correspondence:

    E-mail Address: andre@micro.ufrj.br

    Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

    Rede Micologia RJ and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil

    Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Brazil

    Published Online:https://doi.org/10.2217/fmb-2022-0202

    Background:Scedosporium/Lomentospora species are human pathogens that are resistant to almost all antifungals currently available in clinical practice. Methods: The effects of 16 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione/dicarboxylate chelates containing Cu(II), Mn(II) and Ag(I) against Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were evaluated. Results: To different degrees, all of the test chelates inhibited the viability of planktonic conidial cells, displaying MICs ranging from 0.029 to 72.08 μM. Generally, Mn(II)-containing chelates were the least toxic to lung epithelial cells, particularly [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O (MICs: 1.62–3.25 μM: selectivity indexes >64). Moreover, this manganese-based chelate reduced the biofilm biomass formation and diminished the mature biofilm viability. Conclusion: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2].4H2O opens a new chemotherapeutic avenue for the deactivation of these emergent, multidrug-resistant filamentous fungi.

    Plain language summary

    Metals have been used to treat microbial infections for centuries. In this context, the effects of 16 metal-based compounds against the human pathogens Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were tested. All the 16 metal-based compounds were able to interfere with the viability of these fungal pathogens to different degrees. Among the 16 compounds, a manganese-containing compound presented the best activity against the fungal species and it presented the least toxicity to a human lung cell line. In addition, this manganese-containing compound reduced the ability of fungal cells to come together and form a type of community called biofilm. In conclusion, the manganese-containing compound presents a promising option against the multidrug-resistant filamentous fungi species belonging to the Scedosporium/Lomentospora genera.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Friedman DZP, Schwartz IS. Emerging fungal infections: new patients, new patterns, and new pathogens. J. Fungi (Basel) 5(3), 67 (2019).
    • 2. Cortez KJ, Roilides E, Quiroz-Telles F et al. Infections caused by Scedosporium spp. Clin. Microbiol. Rev. 21(1), 157–197 (2008).
    • 3. Kaltseis J, Rainer J, De Hoog GS. Ecology of Pseudallescheria and Scedosporium species in human-dominated and natural environments and their distribution in clinical samples. Med. Mycol. 47(4), 398–405 (2009).
    • 4. Luplertlop N, Muangkaew W, Pumeesat P, Suwanmanee S, Singkum P. Distribution of Scedosporium species in soil from areas with high human population density and tourist popularity in six geographic regions in Thailand. PLOS ONE 14(1), e0210942 (2019).
    • 5. Ramirez-Garcia A, Pellon A, Rementeria A et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med. Mycol. 56(Suppl. 1), 102–125 (2018). •• An excellent overview about Scedosporium species.
    • 6. Bouchara JP, Le Govic Y, Kabbara S et al. Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis. Expert Rev. Respir. Med. 14(3), 259–273 (2019).
    • 7. Tortorano AM, Richardson M, Roilides E et al. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin. Microbiol. Infect. 20(Suppl. 3), 27–46 (2014).
    • 8. Jenks JD, Seidel D, Cornely OA et al. Voriconazole plus terbinafine combination antifungal therapy for invasive Lomentospora prolificans infections: analysis of 41 patients from the FungiScope® registry 2008–2019. Clin. Microbiol. Infect. 26(6), 784.e1–784.e5 (2020).
    • 9. Mowat E, Williams C, Jones B et al. The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm? Med. Mycol. 47(Suppl. 1), S120–S126 (2009).
    • 10. Mello TP, Aor AC, Gonçalves DS et al. Assessment of biofilm formation by Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans. Biofouling 32, 737–749 (2016).
    • 11. Mello TP, Lackner M, Branquinha MH et al. Impact of biofilm formation and azoles' susceptibility in Scedosporium/Lomentospora species using an in vitro model that mimics the cystic fibrosis patients’ airway environment. J. Cyst. Fibros. 20, 303–309 (2021).
    • 12. Rollin-Pinheiro R, de Meirelles JV, Vila TVM et al. Biofilm formation by Pseudallescheria/Scedosporium species: a comparative study. Front. Microbiol. 8, 1568 (2017).
    • 13. Santos ALS, Sodre CL, Valle RS et al. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis. Curr. Med. Chem. 19, 2715–2737 (2012).
    • 14. Viganor L, Howe O, McCarron P et al. The antibacterial activity of metal complexes containing 1,10-phenanthroline: potential as alternative therapeutics in the era of antibiotic resistance. Curr. Top. Med. Chem. 17(11), 1280–1302 (2017). •• An excellent overview about antimicrobial properties of phenanthroline chelators.
    • 15. McCann M, Kellett A, Kavanagh K et al. Deciphering the antimicrobial activity of phenanthroline chelators. Curr. Med. Chem. 19(17), 2703–2714 (2012).
    • 16. Gandra RM, McCarron P, Viganor L et al. In vivo activity of copper(II), manganese(II), and silver(I) 1,10-phenanthroline chelates against Candida haemulonii using the Galleria mellonella model. Front. Microbiol. 11, 470 (2020).
    • 17. Granato MQ, Mello TP, Nascimento RS et al. Silver(I) and copper(II) complexes of 1,10-phenanthroline-5,6-dione against Phialophora verrucosa: a focus on the interaction with human macrophages and Galleria mellonella larvae. Front. Microbiol. 12, 641258 (2021).
    • 18. Geraghty M, Cronin JF, Devereux M et al. Synthesis and antimicrobial activity of copper(II) and manganese(II) α,ω-dicarboxylate complexes. Biometals 13, 1–8 (2000).
    • 19. McCann M, Geraghty M, Devereux M et al. Insights into the mode of action of the anti-Candida activity of 1,10-phenanthroline and its metal chelates. Met. Based Drugs 7, 185–193 (2000).
    • 20. Coyle B, Kavanagh K, McCann M et al. Mode of anti-fungal activity of 1,10-phenanthroline and its Cu(II), Mn(II) and Ag(I) complexes. Biometals 16, 321–329 (2003).
    • 21. Hoffman AE, Miles L, Greenfield TJ et al. Clinical isolates of Candida albicans, Candida tropicalis, and Candida krusei have different susceptibilities to Co(II) and Cu(II) complexes of 1,10-phenanthroline. Biometals 28, 415–423 (2015).
    • 22. Viganor L, Galdino ACM, Nunes APF et al. Anti-Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. J. Antimicrob. Chemother. 71, 128–134 (2016).
    • 23. Galdino ACM, Viganor L, de Castro AA et al. Disarming Pseudomonas aeruginosa virulence by the inhibitory action of 1,10-phenanthroline-5,6-dione-based compounds: elastase B (LasB) as a chemotherapeutic target. Front. Microbiol. 10, 1701 (2019).
    • 24. Gandra RM, McCarron P, Fernandes MF et al. Antifungal potential of copper(II), manganese(II) and silver(I) 1,10-phenanthroline chelates against multidrug-resistant fungal species forming the Candida haemulonii complex: impact on the planktonic and biofilm lifestyles. Front. Microbiol. 8, 1257 (2017).
    • 25. Granato MQ, Gonçalves DS, Seabra SH et al. 1,10-Phenanthroline-5,6-dione-based compounds are effective in disturbing crucial physiological events of Phialophora verrucosa. Front. Microbiol. 8, 76 (2017).
    • 26. McCarron P, McCann M, Devereux M et al. Unprecedented in vitro antitubercular activitiy of manganese(II) complexes containing 1,10-phenanthroline and dicarboxylate ligands: increased activity, superior selectivity, and lower toxicity in comparison to their copper(II) analogs. Front. Microbiol. 9, 1432 (2018).
    • 27. McCann M, Coyle B, McKay S et al. Synthesis and X-ray crystal structure of [Ag(phendio)2]ClO4 (phendio = 1,10-phenanthroline-5,6-dione) and its effects on fungal and mammalian cells. Biometals 17, 635–645 (2004).
    • 28. Creaven BS, Egan DA, Karcz D et al. Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH2): x-ray crystal structures of [Cu(cdoa)(phen)2].8.8H2O and [Cu(4-Mecdoa)(phen)2].13H2O (phen = 1,10-phenanthroline). J. Inorg. Biochem. 101, 1108–1119 (2007).
    • 29. Mello TP, Aor AC, Oliveira SSC et al. Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and L. prolificans: influence of growth conditions and antifungal susceptibility profiles. Mem. Inst. Oswaldo Cruz 111(7), 484–494 (2016).
    • 30. Casey MT, McCann M, Devereux M et al. Synthesis and structure of the Mn2 (II,II) complex salt [Mn2(oda)(phen)4(H2O)2] [Mn2(oda)2(phen)4] (odaH2 = octanedioic acid): a catalyst for H2O2 disproportionation. J. Chem. Soc. Chem. Commun. 22, 2643–2645 (1994).
    • 31. Devereux M, McCann M, Cronin JF et al. Binuclear and polymeric copper(II) dicarboxylate complexes: synthesis and crystal structures of [Cu2(pda)(phen)4](ClO4)2.5H2O.EtOH, [Cu2(oda)(phen)4](ClO4)2.2.67H2O.EtOH and {Cu2(pda)2(NH3)4(H2O)2.4H2O}n (odaH2 = octanedioic acid; pdaH2 = pentanedioic acid; phen = 1,10-phenanthroline). Polyhedron 18, 2141–2148 (1999).
    • 32. Devereux M, McCann M, Leon V et al. Synthesis and biological activity of manganese(II) complexes of phthalic and isophthalic acid: x-ray crystal structures of [Mn(ph)(Phen)2(H2O)].4H2O, [Mn(Phen)2(H2O)2]2 (Isoph)2(Phen)·14H2O and {[Mn(Isoph)(bipy)2]4.2.75bipy}n (phH2 = phthalic acid; Isoph = isophthalic acid; Phen = 1,10-phenanthroline; bipy = 2,2-bipyridine). Met. Based Drugs 7, 275–288 (2000).
    • 33. Leon V. Synthesis, characterization and catalytic and biological activity of new manganese(II) carboxylate complexes [dissertation]. Dublin Institute of Technology, Dublin, D, Ireland (2000).
    • 34. McCann S, McCann M, Casey MT et al. Manganese(II) complexes of 3,6,9-trioxaundecanedioic acid (3,6,9-tddaH2): x-ray crystal structures of [Mn(3,6,9-tdda)(H2O)2].2H2O and {[Mn(3,6,9-tdda)(phen)2].3H2O.EtOH}n. Polyhedron 16, 4247–4252 (1997).
    • 35. Kellett A, O'Connor M, McCann M et al. Bis-phenanthroline copper(II) phthalate complexes are potent in vitro antitumour agents with ‘self-activating’ metallo-nuclease and DNA binding properties. Dalton Trans. 40, 1024–1027 (2011).
    • 36. Kellett A, Howe O, O'Connor M et al. Radical induced DNA damage by cytotoxic square-planar copper(II) complexes incorporating o-phthalate and 1,10-phenanthroline or 2,2′-dipyridyl. Free Radic. Biol. Med. 53, 564–576 (2012).
    • 37. Thornton L, Dixit V, Assad LO et al. Water-soluble and photo-stable silver(I) dicarboxylate complexes containing 1,10-phenanthroline ligands: antimicrobial and anticancer chemotherapeutic potential, DNA interactions and antioxidant activity. J. Inorg. Biochem. 159, 120–132 (2016).
    • 38. Clinical Laboratory Standards Institute. CLSI Document M38-A2. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard (2nd Edition). PA, USA, 52 (2008).
    • 39. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).
    • 40. Ramage G, Rajendran R, Gutierrez-Correa M et al. Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol. Lett. 324, 89–97 (2011).
    • 41. Mello TP, Bittencourt VCB, Liporagi-Lopes LC et al. Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. Fungal Biol. Rev. 33(1), 16–46 (2018).
    • 42. Metcalfe C, Thomas A. Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc. Rev. 32, 215–224 (2003).
    • 43. McCann M, Santos ALS, Silva BA et al. In vitro and in vivo studies into the biological activities of 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione and its copper(II) and silver(I) complexes. Toxicol. Res. 1, 47–54 (2012).
    • 44. Kharissova OV, Mendez-Rojas MA, Kharisov BI et al. Metal complexes containing natural and artificial radioactive elements and their applications. Molecules 19, 10755–10802 (2019).
    • 45. Deegan C, Coyle B, McCann M et al. In vitro anti-tumour effect of 1,10-phenanthroline-5,6-dione (phendione), [Cu(phendione)3](ClO4)2.4H2O and [Ag(phendione)2]ClO4 using human epithelial cell lines. Chem. Biol. Interact. 164, 115–125 (2006).
    • 46. Galdino ACM, Viganor L, Pereira MM et al. Copper(II) and silver(I)-1,10-phenanthroline-5,6-dione complexes interact with double-stranded DNA: further evidence of their apparent multi-modal activity towards Pseudomonas aeruginosa. J. Biol. Inorg. Chem. 27(1), 201–213 (2022).
    • 47. Silva B, Souza-Gonçalves AL, Pinto MR et al. Metallopeptidase inhibitors arrest vital biological processes in the fungal pathogen Scedosporium apiospermum. Mycoses 54, 105–112 (2011).
    • 48. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11(6), 371–384 (2013).
    • 49. Mello TP, Branquinha MH, Santos ALS. Biofilms formed by Scedosporium and Lomentospora species: focus on the extracellular matrix. Biofouling 36, 308–318 (2020).
    • 50. Mello TP, Oliveira SS, Branquinha MH et al. Decoding the antifungal resistance mechanisms in biofilms of emerging, ubiquitous and multidrug-resistant species belonging to the Scedosporium/Lomentospora genera. Med. Mycol. 60(6), myac036 (2022).
    • 51. Ramage G, Rajendran R, Sherry L et al. Fungal biofilm resistance. Int. J. Microbiol. 2012, 528521 (2012). •Overview of mechanisms of resistance found in fungal biofilms.
    • 52. Kirchhoff L, Dittmer S, Weisner AK et al. Antibiofilm activity of antifungal drugs, including the novel drug olorofim, against Lomentospora prolificans. J. Antimicrob. Chemother. 75(8), 2133–2140 (2020). • Describes the effect of the notable compound olorofim against the multidrug-resistant Lomentospora prolificans.
    • 53. Kamiya Y, Takaku H, Yamada R et al. Determination and prediction of permeability across intestinal epithelial cell monolayer of a diverse range of industrial chemicals/drugs for estimation of oral absorption as a putative marker of hepatotoxicity. Toxicol. Rep. 7, 149–154 (2020).
    • 54. Trainor GL. The importance of plasma protein binding in drug discovery. Expert Opin. Drug Discov. 2(1), 51–64 (2007).
    • 55. Lamie PF, Philoppes JN. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors. Bioorg. Chem. 116, 105335 (2021).