We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Kosakonia radicincitans with hypervirulent lON genes causes human bloodstream infections

    Zongyao Chen

    People's Hospital of Deyang City, Deyang, China

    ,
    Liangyou Tang

    People's Hospital of Deyang City, Deyang, China

    ,
    Chengliang Yuan

    People's Hospital of Deyang City, Deyang, China

    ,
    Jianfei E

    People's Hospital of Deyang City, Deyang, China

    ,
    Dengchao Wang

    People's Hospital of Deyang City, Deyang, China

    ,
    Xiao Liu

    People's Hospital of Deyang City, Deyang, China

    ,
    Mao Zheng

    People's Hospital of Deyang City, Deyang, China

    ,
    Hualiang Xiao

    People's Hospital of Deyang City, Deyang, China

    &
    Published Online:https://doi.org/10.2217/fmb-2022-0190

    Kosakonia radicincitans is a species within the new genus Kosakonia, which is typically a plant pathogen, with rare reports of human infection. The number of human infections may be underestimated because this new genus is under-represented among diagnostic tools. This report describes a case of bloodstream infection caused by K. radicincitans. The pathogen was identified by matrix-assisted laser desorption/ionization-TOF mass spectrometry and 16S rRNA gene sequencing. The hypervirulent human pathogenicity gene LON, which has not been described before, was detected in the bacterial genome by gene annotation. Thus, this discovery provides a new reference for studying the pathogenic mechanism of this rare pathogen.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst. Appl. Microbiol. 36(5), 309–319 (2013).
    • 2. Yang XJ, Wang S, Cao JM, Hou JH. Complete genome sequence of human pathogen Kosakonia cowanii type strain 888-76(T). Braz. J. Microbiol. 49(1), 16–17 (2018).
    • 3. Mertschnigg T, Patz S, Becker M et al. First report of Kosakonia radicincitans bacteraemia from Europe (Austria) – identification and whole-genome sequencing of strain DSM 107547. Sci. Rep. 10(1), 1948 (2020). • This paper shows the genome of Kosakonia radicincitans in detail.
    • 4. Wang C, Wu W, Wei L et al. Kosakonia quasisacchari sp. nov. recovered from human wound secretion in China. Int. J. Syst. Evol. Microbiol. 69(10), 3155–3160 (2019).
    • 5. Wang L, Wu L, Chen Q et al. Development of sugarcane resource for efficient fermentation of exopolysaccharide by using a novel strain of Kosakonia cowanii LT-1. Asian J. Biotechnol. Bioresour. Technol. 280, 247–254 (2019).
    • 6. Dash D, Osborne W. Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain – VITPSCQ3 in a vertical-flow packed bed biofilm bioreactor. Ecotoxicol. Environ. Saf. 192, 110290 (2020).
    • 7. Gao H, Lu C, Wang H et al. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int. J. Bio. Macromol. 150, 955–964 (2020).
    • 8. Cruz Barrera M, Jakobs-Schoenwandt D, Gómez M, Becker M, Patel A, Ruppel S. Salt stress and hydroxyectoine enhance phosphate solubilisation and plant colonisation capacity of Kosakonia radicincitans. J. Adv. Res. 19, 91–97 (2019).
    • 9. Berinson B, Bellon E, Christner M, Both A, Aepfelbacher M, Rohde H. Identification of Kosakonia cowanii as a rare cause of acute cholecystitis: case report and review of the literature. BMC Infect. Dis. 20(1), 366 (2020).
    • 10. Bhatti MD, Kalia A, Sahasrabhojane P, Kim J, Greenberg DE, Shelburne SA. Identification and whole genome sequencing of the first case of Kosakonia radicincitans causing a human bloodstream infection. Front. Microbiol. 8, 62 (2017). • This paper is the first report about Kosakonia radicincitans bacteremia and shows the genome of the bacterium in detail.
    • 11. Clinical and Laboratory Standards Institute, Wilson ML. Principles and procedures for blood cultures: approved guideline. USA (2007).
    • 12. Performance Standards for Antimicrobial Susceptibility Testing, M100. Clinical and Laboratory Standards Institute. USA (2021).
    • 13. Bankevich A, Nurk S, Antipov D et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012).
    • 14. Simpson JT, Wong K, Jackman SD. ABySS: a parallel assembler for short read sequence data. Genome Res. 19(6), 1117-1123 (2009).
    • 15. Lin S-H, Liao Y-C. CISA: contig integrator for sequence assembly of bacterial genomes. PLOS ONE 8, e60843 (2013).
    • 16. Urban M, Pant R, Raghunath A, Irvine A, Pedro H, Hammond-Kosack K. The Pathogen–Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res. 43, D645–D655 (2015).
    • 17. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res. 40, D641–D645 (2012).
    • 18. Jia B, Raphenya A, Alcock B et al. CARD 2017: expansion and model-centric curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 45, D566–D573 (2017).
    • 19. Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ. Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for Aeromonas genomes in the GenBank database. PLOS ONE 10(1), e0115813 (2015).
    • 20. Ciufo S, Kannan S, Sharma S et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68(7), 2386–2392 (2018).
    • 21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl Acad. Sci. USA 106(45), 19126–19131 (2009).
    • 22. Urban M, Cuzick A, Seager J et al. PHI-base: the Pathogen–Host Interactions database. Nucleic Acids Res. 48(D1), D613–D620 (2020).
    • 23. Dong T, Schellhorn HE. Role of RpoS in virulence of pathogens. Infect. Immun. 78(3), 887–897 (2010).
    • 24. Eisenstark A, Calcutt M, Becker-Hapak M, Ivanova A. Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Rad. Biol. Med. 21(7), 975–993 (1996).
    • 25. Demir Z, Bayraktar A, Tunca S. One extra copy of lon gene causes a dramatic increase in actinorhodin production by streptomyces coelicolor A3(2). Curr. Microbiol. 76(9), 1045–1054 (2019). • This paper describes the function of the LON gene.
    • 26. Balleste-Delpierre C, Fernandez-Orth D, Ferrer-Navarro M et al. First insights into the pleiotropic role of vrf (yedF), a newly characterized gene of Salmonella typhimurium. Sci. Rep. 7(1), 15291 (2017).
    • 27. Kirthika P, Senevirathne A, Jawalagatti V, Park S, Lee JH. Deletion of the lon gene augments expression of Salmonella pathogenicity island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes 11(6), 1695–1712 (2020).
    • 28. Breidenstein EB, Janot L, Strehmel J et al. The lon protease is essential for full virulence in Pseudomonas aeruginosa. PLOS ONE 7(11), e49123 (2012). • This paper proved the LON gene is essential for full virulence in Pseudomonas aeruginosa.
    • 29. Takaya A, Suzuki M, Matsui H et al. Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar typhimurium infection of mice. Infect. Immun. 71(2), 690–696 (2003).
    • 30. Takaya A, Tomoyasu T, Tokumitsu A, Morioka M, Yamamoto T. The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J. Bacteriol. 184(1), 224–232 (2002).
    • 31. Zhou X, Teper D, Andrade M et al. A phosphorylation switch on lon protease regulates bacterial type III secretion system in host. mBio 9(1), e02146-17 (2018).