We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb-2022-0162

Chronic skin wound infections are inextricably linked with high mortality rates. With the rise in the aging population and the threat of diabetes, obesity and lifestyle-based diseases, the risk incurred from invasive wound pathogens has been ever escalating. Thus, more efficacious wound care management is necessary to cope with such morbid illnesses. A plethora of bioactive agents, such as antibiotics, phytochemicals, essential oils, phages among others, has been exploited to develop wound dressings, raising tremendous interest in their prospective use as wound care products. The present review critically focuses on the therapeutic implications of advanced wound dressings that have assisted in the expansion of regenerative medicine and also discusses the practical concerns that have limited their bench-to-market entry.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1. Richardson M. Understanding the structure and function of the skin. Nurs. Times 99(31), 46–48 (2003).
  • 2. Rezvani Ghomi S, Khalili S, Nouri Khorasani R, Esmaeely Neisiany S. Ramakrishna wound dressings: current advances and future directions. J. Appl. Polym. Sci. 136(27), 47738 (2019).
  • 3. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat. Rev. Dis. Primers 6, 11 (2020).
  • 4. Gupta JL, Makhija LK, Bajaj SP. National programme for prevention of burn injuries. Indian J. Plast. Surg. 43, S6–S10 (2010).
  • 5. Kloth L. The roles of physical therapists in wound management, part II: patient and wound evaluation. J. Am. Col. Certif. Wound Spec. 1(2), 49–50 (2009).
  • 6. Sen CK, Gordillo GM, Roy S et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17(6), 763–771 (2009).
  • 7. Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv. Wound Care 8(2), 39–48 (2019).
  • 8. Garraud O, Hozzein WN, Badr G. Wound healing: time to look for intelligent, ‘natural’ immunological approaches? BMC Immunol. 18(S1), 23 (2017).
  • 9. Nussbaum SR, Carter MJ, Fife CE et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21(1), 27–32 (2018).
  • 10. Olsson M, Jarbrink K, Divakar U et al. The humanistic and economic burden of chronic wounds: a systematic review. Wound Repair Regen. 27(1), 114–125 (2019).
  • 11. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv. Wound Care 4(9), 560–582 (2015).
  • 12. Herman TF. First Pass Effect. Cynthia Santos StatPearls Publishing Treasure Island, FL (2022).
  • 13. Joshi M, Butola BS, Saha K. Advances in topical drug-delivery system: micro to nanofibrous structures. J. Nanosci. Nanotechnol. 14(1), 853–867 (2014).
  • 14. Element. Topical drug-delivery systems: an overview (2022). www.element.com/nucleus/2022/topical-drug-delivery-systems-overview (Accessed 2 June 2022).
  • 15. PM360. A Robust market rich with opportunities: advanced wound dressings (2015). www.pm360online.com/a-robust-market-rich-with-opportunities-advanced-wound-dressings (Accessed 2 June 2022).
  • 16. Financeswire.Wound Closure Products Market Share 2018 Industry analysis, growth, and forecast to 2022 (2018). www.financeswire.com/wound-closure-products-market-share-2018-industry-analysis-growth-and-forecast-to-2022 (Accessed 2 June 2022).
  • 17. Bisresearch. Global Advanced Wound Care Market–Analysis and Forecast, 2018–2024 (2019). bisresearch.com/industry-report/advanced-wound-care-market.html (Accessed 2 June 2022).
  • 18. Mordor Intelligence. India Wound Care Management Market–Growth, Trends, COVID-19 Impact, and Forecasts (2022–2027) (2022). www.mordorintelligence.com/industry-reports/india-wound-care-management-devices-market (Accessed 2 June 2022).
  • 19. Cision. India Wound Care Market 2017–2022–Johnson and Johnson Leads the Market (2017). www.prnewswire.com/news-releases/india-wound-care-market-2017-2022—johnson-and-johnson-leads-the-market-300565349.html (Accessed 2 June 2022).
  • 20. Karimi K, Odhav A, Kollipara R, Fike J, Stanford C, Hall JC. Acute cutaneous necrosis: a guide to early diagnosis and treatment. J. Cutan. Med. Surg. 21(5), 425–437 (2017).
  • 21. Shi C, Wang C, Liu H et al. Selection of appropriate wound dressing for various wounds. Front. Bioeng. Biotechnol. 8 (182), (2020).
  • 22. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound-healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8), 1–30 (2020). • Highlights the importance of multifactorial wound-healing process.
  • 23. Wilhelm KP, Wilhelm D, Bielfeldt S. Models of wound healing: an emphasis on clinical studies. Skin Res. Technol. 23(1), 3–12 (2017).
  • 24. Velnar T, Bailey T, Smrkolj V. The wound-healing process: an overview of the cellular and molecular mechanisms. Int. J. Med. Res. 37(5), 1528–1542 (2009).
  • 25. Ascione F, Caserta S, Guido S. The wound healing assay revisited: a transport phenomena approach. Chem. Eng. Sci. 160, 200–209 (2017).
  • 26. Sindrilaru A, Scharffetter-Kochanek K. Disclosure of the culprits: macrophages-versatile regulators of wound healing. Adv. Wound Care 2(7), 357–368 (2013).
  • 27. Alhajj M. Physiology, granulation tissue. Amandeep Goyal StatPearls Publishing, Treasure Island, FL (2021).
  • 28. Werner S, Krieg T, Smola H. Keratinocyte–fibroblast interactions in wound healing. J. Investig. Dermatol. 127(5), 998–1008 (2007).
  • 29. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 453(7193), 314–321 (2008).
  • 30. Su L, Zheng J, Wang Y, Zhang W, Hu D. Emerging progress on the mechanism and technology in wound repair. Biomed. Pharmacother. 117, 109191 (2019).
  • 31. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur. Surg. Res. 58(1–2), 81–94 (2017).
  • 32. Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules 11(5), 1–25 (2021).
  • 33. Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Microbial biofilms and chronic wounds. Microorganisms 5(1), 1–15 (2017).
  • 34. Kathawala MH, Ng WL et al. Healing of chronic wounds: an update of recent developments and future possibilities. Tissue Eng. Part B Rev. 25(5), 429–444 (2019).
  • 35. Murray RZ, West ZE, Cowin AJ, Farrugia BL. Development and use of biomaterials as wound healing therapies. Burns Trauma 7, 2 (2019).
  • 36. Queen D, Orsted H, Sanada H, Sussman G. A dressing history. Int. Wound J. 1(1), 59–77 (2004).
  • 37. Vowden K, Vowden P. Wound dressings: principles and practice. Surgery (Oxford) 32(9), 462–467 (2004).
  • 38. Dhivya S, Padma VV, Santhini E. Wound dressings–a review. BioMedicine 5(4), 24–28 (2015).
  • 39. Sarabahi S. Recent advances in topical wound care. Indian J. Plast. Surg. 45(02), 379–387 (2019).
  • 40. Eaglstein WH. Moist wound healing with occlusive dressings: a clinical focus. Dermatol. Surg. 27(2), 175–181 (2001).
  • 41. Rogers AA, Walmsley RS, Rippon MG, Bowler PG. Adsorption of serum-derived proteins by primary dressings: implications for dressing adhesion to wounds. J. Wound Care 8(8), 403–406 (1999).
  • 42. Moeini A, Pedram P, Makvandi P, Malinconico M, Gomez d'Ayala G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr. Polym. 233, 1–16 (2020).
  • 43. Zaman HU, Islam JMM, Khan MA, Khan RA. Physico-mechanical properties of wound dressing material and its biomedical application. J. Mech. Behav. Biomed. Mater. 4(7), 1369–1375 (2011).
  • 44. Vivcharenko V, Przekora A. Modifications of wound dressings with bioactive agents to achieve improved pro-healing properties. Appl. Sci. 11(9), 4114 (2021). •• Presents various bioactive agent-loaded wound dressings.
  • 45. Aljghami ME, Saboor S, Amini-Nik S. Emerging innovative wound dressings. Ann. Biomed. Eng. 47(3), 659–675 (2018). • Presents various emerging and innovative wound dressings.
  • 46. Mir M, Ali MN, Barakullah A et al. Synthetic polymeric biomaterials for wound healing: a review. Prog. Biomater. 7(1), 1–21 (2018).
  • 47. Britto EJ, Nezwek TA, Robins M. Wound dressings. StatPearls Publishing, Treasure Island, FL (2022).
  • 48. Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8(3), 217–233 (2017).
  • 49. Khullar L, Harjai K, Chhibber S. Exploring the therapeutic potential of staphylococcal phage formulations: current challenges and applications in phage therapy. J. Appl. Microbiol. 132(5), 3515–3532 (2022).
  • 50. Kaur P, Gondil VS, Chhibber S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int. J. Pharm. 572, 118779 (2019). • An important research paper based on a novel hydrogel preparation for the delivery of phages.
  • 51. Dhivya S, Padma VV, Santhini E. Wound dressings–a review. Biomedicine 5(4), 22 (2015).
  • 52. Fan L, Yang H, Yang J, Peng M, Hu J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 146, 427–434 (2016).
  • 53. Nguyen CV, Washington CV, Soon SL. Hydrocolloid Dressings Promote Granulation Tissue on Exposed Bone. Dermatol. Surg. 39(1), 123–125 (2013).
  • 54. Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front. Bioeng. Biotechnol. 4, 1–20 (2016).
  • 55. Dabiri G, Damstetter E, Phillips T. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care 5(1), 32–41 (2016).
  • 56. Aderibigbe B, Buyana B. Alginate in wound dressings. Pharmaceutics 10(2), 42 (2018).
  • 57. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1), 106–126 (2012).
  • 58. Zhao WY, Fang QQ, Wang XF et al. Chitosan-calcium alginate dressing promotes wound healing: a preliminary study. Wound Repair Regen. 28(3), 326–337 (2019).
  • 59. Davies P, McCarty S, Hamberg K. Silver-containing foam dressings with Safetac: a review of the scientific and clinical data. J. Wound Care 26(Sup6a), S1–S32 (2017).
  • 60. Zahedi P, Rezaeian I, Ranaei-Siadat S-O, Jafari S-H, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol. 21(2), 77–95 (2010).
  • 61. Pang Y, Qin A, Lin X et al. Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget 8(22), 35583–35591 (2017).
  • 62. Lu Z, Gao J, He Q et al. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym. 156, 460–469 (2017).
  • 63. Quagliariello V, Masarone M, Armenia E et al. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells. Oncol. Rep. 41(3), 1476–1486 (2019).
  • 64. López-Mata MA, Ruiz-Cruz S, de Jesús Ornelas-Paz J et al. Mechanical, barrier and antioxidant properties of chitosan films incorporating cinnamaldehyde. J. Polym. Environ. 26(2), 452–461 (2017).
  • 65. Zeltz C, Gullberg D. The integrin–collagen connection–a glue for tissue repair? J. Cell Sci. 129(6),653–64 (2016).
  • 66. Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: from waste to wealth. Int. J. Biol. Macromol. 211, 183–197 (2022).
  • 67. Eskandarinia A, Kefayat A, Agheb M et al. A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Sci. Rep. 10(1), 1–15 (2020).
  • 68. Wang L, Fan X, Gonzalez Moreno M et al. Photocatalytic quantum dot-armed bacteriophage for combating drug-resistant bacterial infection. Adv. Sci. 9(17), 1–8 (2022).
  • 69. Contardi M, Heredia-Guerrero JA, Perotto G et al. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur. J. Pharm. Sci. 104, 133–144 (2017).
  • 70. Shefa AA, Sultana T, Park MK, Lee SY, Gwon JG, Lee BT. Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater. Des. 186, 108313 (2020).
  • 71. Ali A, Shahid MA, Hossain MD, Islam MN. Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract. Int J. Biol. Macromol. 138, 13–20 (2019).
  • 72. Altaf F, Niazi MBK, Jahan Z et al. Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. J. Polym. Environ. 29(1), 156–174 (2020).
  • 73. Adamu BF, Gao J, Jhatial AK, Kumelachew DM. A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Mater. Des. 209, 109942 (2021). •• Highlights the importance of plant extracts as effective wound-healing agents.
  • 74. Sabitha M, Rajiv S. Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polym. Eng. Sci. 55(3), 541–548 (2015).
  • 75. Monteiro N, Martins M, Martins A et al. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater. 18, 196–205 (2015).
  • 76. Chen H, Xing X, Tan H et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater. Sci. Eng. C Mater. Biol. Appl 70(Pt 1), 287–295 (2017).
  • 77. Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R. Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydr. Polym. 157, 1963–1970 (2017).
  • 78. Simoes D, Miguel SP, Ribeiro MP, Coutinho P, Mendonca AG, Correia IJ. Recent advances on antimicrobial wound dressing: a review. Eur. J. Pharm. Biopharm. 127, 130–141 (2018).
  • 79. Garcia MC, Aldana AA, Tartara LI et al. Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin. Carbohydr. Polym. 175, 75–86 (2017).
  • 80. Salguero Y, Valenti L, Rojas R, Garcia MC. Ciprofloxacin-intercalated layered double hydroxide-in-hybrid films as composite dressings for controlled antimicrobial topical delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 111, 110859 (2020).
  • 81. Li H, Williams GR, Wu J, Wang H, Sun X, Zhu LM. Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-varepsilon-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater. Sci. Eng. C Mater. Biol. Appl. 79, 245–254 (2017).
  • 82. Adhirajan N, Shanmugasundaram N, Shanmuganathan S, Babu M. Collagen-based wound dressing for doxycycline delivery: in-vivo evaluation in an infected excisional wound model in rats. J. Pharm. Pharmacol. 61(12), 1617–1623 (2009).
  • 83. Montravers P, Bassetti M, Dupont H et al. Efficacy of tigecycline for the treatment of complicated skin and soft-tissue infections in real-life clinical practice from five European observational studies. J. Antimicrob. Chemother. 68(Suppl. 2), ii15–24 (2013).
  • 84. Dhanalakshmi V, Nimal TR, Sabitha M, Biswas R, Jayakumar R. Skin and muscle permeating antibacterial nanoparticles for treating Staphylococcus aureus infected wounds. J Biomed. Mater. Res. B Appl. Biomater. 104(4), 797–807 (2016).
  • 85. Nimal TR, Baranwal G, Bavya MC, Biswas R, Jayakumar R. Anti-staphylococcal activity of injectable nano tigecycline/chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Appl. Mater. Interfaces 8(34), 22074–22083 (2016).
  • 86. Vasile BS, Oprea O, Voicu G et al. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin-chitosan composite with potential applications in wounds care. Int. J. Pharm. 463(2), 161–169 (2014).
  • 87. Shao W, Wu J, Wang S, Huang M, Liu X, Zhang R. Construction of silver sulfadiazine loaded chitosan composite sponges as potential wound dressings. Carbohydr. Polym. 157, 1963–1970 (2017).
  • 88. Fajardo AR, Lopes LC, Caleare AO et al. Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application. Mater. Sci. Eng. C Mater. Biol. Appl. 33(2), 588–595 (2013).
  • 89. Shao W, Liu H, Liu X et al. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym. 132, 351–358 (2015).
  • 90. Liu X, Gan H, Hu C et al. Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent. Int. J. Nanomed. 14, 289–300 (2019).
  • 91. Sandri G, Bonferoni MC, Ferrari F et al. Montmorillonite-chitosan-silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr. Polym. 102, 970–977 (2014).
  • 92. Virych P, Nadtoka O, Doroschuk V et al. Cefuroxime-loaded hydrogels for prevention and treatment of bacterial contamination of open wounds. Int. J. Polym. Sci. 2021, 1–7 (2021).
  • 93. Hogg S. Essential Microbiology. Chapter 17: Antimicrobial Agents John Wiley & Sons (2013).
  • 94. Chadha J, Khullar L. Subinhibitory concentrations of nalidixic acid alter bacterial physiology and induce anthropogenic resistance in a commensal strain of Escherichia coli in vitro. Lett. Appl. Microbiol. 73(5), 623–633 (2021).
  • 95. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20(3), 200–216 (2021).
  • 96. Meng B, Li J, Cao H. Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr. Pharm. Des. 19(11), 2101–2113 (2013).
  • 97. Saeed SM, Mirzadeh H, Zandi M, Barzin J. Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog. Biomater. 6(1–2), 39–48 (2017).
  • 98. Gupta A, Keddie DJ, Kannappan V et al. Production and characterisation of bacterial cellulose hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings. Eur. Polym. J. 118, 437–450 (2019).
  • 99. Abbas M, Hussain T, Arshad M et al. Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol. Int. J. Biol. Macromol. 140, 871–876 (2019).
  • 100. Saeed SM, Mirzadeh H, Zandi M, Barzin J. Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog. Biomater. 6(1–2), 39–48 (2017).
  • 101. Venkatasubbu GD, Anusuya T. Investigation on curcumin nanocomposite for wound dressing. Int. J. Biol. Macromol. 98, 366–378 (2017).
  • 102. Mutlu G, Calamak S, Ulubayram K, Guven E. Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J. Drug Deliv. Sci. Technol. 43, 185–193 (2018).
  • 103. Baghersad S, Hajir Bahrami S, Mohammadi MR, Mojtahedi MRM, Milan PB. Development of biodegradable electrospun gelatin/aloe-vera/poly(ε-caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Mater. Sci. Eng. C 93, 367–379 (2018).
  • 104. Kheradvar SA, Nourmohammadi J, Tabesh H, Bagheri B. Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing. Colloids Surf. B Biointerfaces 166, 9–16 (2018).
  • 105. Motealleh B, Zahedi P, Rezaeian I, Moghimi M, Abdolghaffari AH, Zarandi MA. Morphology, drug release, antibacterial, cell proliferation, and histology studies of chamomile-loaded wound dressing mats based on electrospun nanofibrous poly(ε-caprolactone)/polystyrene blends. J. Biomed. Mater. Res. Part B Appl. Biomater. 102(5), 977–987 (2014).
  • 106. Pereira Dos Santos E, Nicacio PHM, Coelho Barbosa F et al. Chitosan/essential oils formulations for potential use as wound dressing: physical and antimicrobial properties. Materials (Basel) 12(14), 1–21 (2019). • Highlights the prospective role of essential oils in wound care.
  • 107. Najafloo R, Behyari M, Imani R, Nour S. A mini-review of thymol incorporated materials: applications in antibacterial wound dressing. J. Drug Deliv. Sci. Technol. 60, 101904 (2020). • Presents the application of thymol-based dressings as antibacterial agents.
  • 108. Jiji S, Udhayakumar S, Rose C, Muralidharan C, Kadirvelu K. Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int. J. Biol. Macromol. 122, 452–460 (2019).
  • 109. Ardekani NT, Khorram M, Zomorodian K, Yazdanpanah S, Veisi H. Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int. J. Biol. Macromol. 125, 743–750 (2019).
  • 110. Lee K, Lee S. Electrospun nanofibrous membranes with essential oils for wound dressing applications. Fibers Polym. 21(5), 999–1012 (2020).
  • 111. Chang RYK, Morales S, Okamoto Y, Chan HK. Topical application of bacteriophages for treatment of wound infections. Transl. Res. 220, 153–166 (2020).
  • 112. Markoishvili K, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A. A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int. J. Dermatol. 41(7), 453–458 (2002).
  • 113. Jikia D, Chkhaidze N, Imedashvili E et al. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clin. Exp. Dermatol. 30(1), 23–26 (2005).
  • 114. Kifelew LG, Warner MS, Morales S et al. Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol. 20(1), 1–10(2020).
  • 115. Sarhan WA, Azzazy HME. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine 12(17), 2055–2067 (2017). • Highlights the role of phage-loaded dressings in chronic wound healing.
  • 116. Chantre CO, Campbell PH, Golecki HM et al. Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials 166, 96–108 (2018).
  • 117. Ahn S, Chantre CO, Gannon AR et al. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv. Healthc. Mater. 7(9), e1701175 (2018).
  • 118. Guarderas F, Leavell Y, Sengupta T, Zhukova M, Megraw TL. Assessment of chicken-egg membrane as a dressing for wound healing. Adv. Skin Wound Care 29(3), 131–134 (2016).
  • 119. Singla R, Soni S, Kulurkar PM, Kumari A et al. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr. Polym. 155, 152–162 (2017).
  • 120. Singla R, Soni S, Patial V et al. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int. J. Biol. Macromol. 105(Pt 1), 45–55 (2017).
  • 121. Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Murković Steinberg I. Smart bandage with wireless connectivity for optical monitoring of pH. Sens. Actuators B Chem. 246, 455–460 (2017).
  • 122. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 19(6), 296–302 (2006).
  • 123. Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298(9), 413–420 (2007).
  • 124. Lin S, Yuk H, Zhang T et al. Stretchable Hydrogel Electronics and Devices. Adv. Mater. 28(22), 4497–4505 (2016).
  • 125. Thet NT, Alves DR, Bean JE et al. Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl. Mater. Interfaces 8(24), 14909–14919 (2016).
  • 126. Laurano R, Boffito M, Ciardelli G, Chiono V. Wound dressing products: a translational investigation from the bench to the market. Engineered Regeneration 3(2), 182–200 (2022).
  • 127. Rizzi SC, Upton Z, Bott K, Dargaville TR. Recent advances in dermal wound healing: biomedical device approaches. Expert Rev. Med. Devices 7(1), 143–154 (2014).
  • 128. Safdari M, Shakiba E, Kiaie SH, Fattahi A. Preparation and characterization of ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing. Fibers Polym. 17(5), 744–750 (2016).
  • 129. Kamoun EA, Kenawy E-RS, Tamer TM, El-Meligy MA, Mohy Eldin MS. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J. Chem. 8(1), 38–47 (2015).
  • 130. Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater. Sci. Eng. C 58, 242–253 (2016).
  • 131. Siafaka PI, Zisi AP, Exindari MK, Karantas ID, Bikiaris DN. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydr. Polym. 143, 90–99 (2016).
  • 132. Sadeghianmaryan A, Yazdanpanah Z, Soltani YA, Sardroud HA, Nasirtabrizi MH, Chen X. Curcumin-loaded electrospun polycaprolactone/montmorillonite nanocomposite: wound dressing application with anti-bacterial and low cell toxicity properties. J. Biomater. Sci. Polym. Ed. 31(2), 169–187 (2020).
  • 133. Sarhan WA, Azzazy HME, El-Sherbiny IM. Honey/chitosan nanofiber wound dressing enriched with allium sativum and cleome droserifolia: enhanced antimicrobial and wound-healing activity. ACS Appl. Mater. Interfaces 8(10), 6379–6390 (2016).
  • 134. Al-Musawi S, Albukhaty S, Al-Karagoly H et al. Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing. Molecules 25(20), 1–16 (2020).
  • 135. Chhibber T, Gondil VS, Sinha VR. Development of chitosan-based hydrogel containing antibiofilm agents for the treatment of Staphylococcus aureus–infected burn wound in mice. AAPS PharmSciTech 21, 43 (2020).
  • 136. Xu Q, A S, Gao Y et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 75, 63–74 (2018).
  • 137. Sanchez-Sanchez R, Brena-Molina A, Martinez-Lopez V et al. Generation of two biological wound dressings as a potential delivery system of human adipose-derived mesenchymal stem cells. ASAIO J. 61(6), 718–725 (2015).
  • 138. Wang S, Yang H, Tang Z, Long G, Huang W. Wound dressing model of human umbilical cord mesenchymal stem cells-alginates complex promotes skin wound healing by paracrine signaling. Stem Cells Int. 2016, 1–8 (2016).
  • 139. Mostafalu P, Kiaee G, Giatsidis G et al. A textile dressing for temporal and dosage controlled drug delivery. Adv. Funct. Mater. 27(41), 1702399 (2017).
  • 140. Choi SM, Lee KM, Kim HJ et al. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater. 66, 325–334 (2018).
  • 141. Hsu BB, Hagerman SR, Jamieson K et al. Multifunctional self-assembled films for rapid hemostat and sustained anti-infective delivery. ACS Biomater. Sci. Eng. 1(3), 148–156 (2015).
  • 142. Chen H, Lan G, Ran L et al. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 183, 70–80 (2018).
  • 143. 3M. 3M™ Tegaderm™ Transparent Film Dressing Frame Style 1624W, 2 3/8 in x 2 3/4 in (6cm×7cm) (2022). www.3mindia.in/3M/en_IN/p/d/v000058079/ (Accessed 2 June 2022).
  • 144. 3M+KCl .Bioclusive™ Plus Transparent Film Dressing (2020). www.acelity.com/healthcare-professionals/global-product-catalog/catalog/bioclusive-plus-dressing (Accessed 2 June 2022).
  • 145. Wound source. Procellera™ Composite Antibacterial Wound Dressing (2021). www.woundsource.com/product/procellera-composite-antibacterial-wound-dressing (Accessed 2 June 2022).
  • 146. Wound source. Silverlon® Wound Pad Dressing (2021). www.woundsource.com/product/silverlon-wound-pad-dressing (Accessed 2 June 2022).
  • 147. L&R global. Vliwasorb® Pro (2012). www.lohmann-rauscher.com/en/products/wound-care/specialty-wound-care/vliwasorb-pro/ (Accessed 2 June 2022).
  • 148. Convatec. Aquacel® Ag Extra™ (2022). www.convatec.co.in/products/pc-wound-burns/dd439fea-a0be-4328-b544-f430ee87f97a#https://www.convatec.co.in/wound-skin/foamlite-dressings/ (Accessed 2 June 2022).
  • 149. Convatec. FoamLite™ ConvaTec Dressing (2022). www.convatec.co.in/wound-skin/foamlite-dressings/ (Accessed 2 June 2022).
  • 150. Wound source. Lyofoam® Max Polyurethane Foam Sterile Dressing (2021). www.woundsource.com/product/lyofoam-max-polyurethane-foam-sterile-dressing (Accessed 2 June 2022).
  • 151. Medical dressings. Hydrosorb Hydrogel Dressings (Hartmann) (2022). https://medicaldressings.co.uk/hydrosorb-hydrogel-dressings-hartmann/ (Accessed 2 June 2022).
  • 152. Pearson surgical supply. Sof-Foam® Foam Dressing (2022). www.pearsonsurgical.com/catalog/product.asp?majcatid=79&catid=289&subcatid=2191&pid=18272 (Accessed 2 June 2022).
  • 153. Smith+Nephew. Allevyn Ag Advanced Foam Wound Dressings (2016). www.smith-nephew.com/key-products/advanced-wound-management/allevyn/allevyn-gentle-border-ag/ (Accessed 2 June 2022).
  • 154. Allegro Medical. Curasorb Calcium Alginate Dressing (2022). www.allegromedical.com/products/curasorb-calcium-alginate-dressing-4-x-4/ (Accessed 2 June 2022).
  • 155. Southwest Medical. Tegagel Hydrogel Wound Filler (2022). www.southwestmedical.com/Hydrogels/Tegagel-Hydrogel-Wound-Filler-15gm/2798p (Accessed 2 June 2022).
  • 156. Smith+Nephew. ActicoatAntimicrobial Barrier Silver Dressing (2016). www.smith-nephew.com/professional/products/advanced-wound-management/acticoat/ (Accessed 2 June 2022).
  • 157. RevMedx. Revolutionizes the treatment of gunshot and knife wounds (2022). www.revmedx.com/xstat/ (Accessed 2 June 2022).