We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Treatment options for infections caused by multidrug-resistant Gram-negative bacteria: a guide to good clinical practice

    Khadijeh Delroba‡

    Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran

    ‡Both authors contributed equally

    Search for more papers by this author

    ,
    Maryam Alaei‡

    Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran

    ‡Both authors contributed equally

    Search for more papers by this author

    &
    Hossein Khalili

    *Author for correspondence: Tel.: +98 216 695 4709;

    E-mail Address: Khalilih@sina.tums.ac.ir

    Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran

    Research Center for Antibiotic Stewardship & Antimicrobial Resistance, Imam Khomeini Hospital, Tehran, 1417614411, Iran

    Published Online:https://doi.org/10.2217/fmb-2022-0160

    The rapid emergence of multidrug-resistant Gram-negative bacterial infections necessitates the development of new treatments or the repurposing of available antibiotics. Here, treatment options for treatment of these infections, recent guidelines and evidence are reviewed. Studies that included treatment options for infections caused by multidrug-resistant Gram-negative bacteria (Enterobacterales and nonfermenters), as well as extended-spectrum β-lactamase-producing and carbapenem-resistant bacteria, were considered. Potential agents for the treatment of these infections, considering type of microorganism, mechanism of resistant, source and severity of infection as well as pharmacotherapy considerations, are summarized.

    Plain language summary

    Gram-negative bacteria (GNB) are one of the most important causes of infection in humans. GNB can evolve to neutralize the effects of antibiotics by producing proteins called enzymes that break down the antibiotics or through mechanisms that discharge antibiotics from bacteria. The antibiotic can therefore no longer kill the bacteria, so they are considered antibiotic-resistant. For the treatment of resistant GNB infections, smart consideration and selection of potential combinations of available antibiotics or the development of new drugs are needed. In this review, we summarized and collected the recent guidelines and literature reports and present the pharmacological considerations for treatment of resistant GNB infections.

    Tweetable abstract

    The rapid spread of antimicrobial resistance is a serious concern worldwide. There are limited options for the treatment of infections due to multidrug-resistant Gram-negative bacteria, therefore optimizing the use of available antibiotics is essential.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18(3), 318–327 (2018).
    • 2. Kanj SS, Bassetti M, Kiratisin P et al. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 60(3), 106633 (2022).
    • 3. Palacios-Baena ZR, Giannella M, Manissero D et al. Risk factors for carbapenem-resistant Gram-negative bacterial infections: a systematic review. Clin. Microbiol. Infect. 27(2), 228–235 (2021).
    • 4. Paul M, Carrara E, Retamar P et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 28(4), 521–547 (2022). •• ESCMID recommendations or treatments of multidrug-resistant (MDR) bacteria.
    • 5. Tamma PD, Aitken SL, Bonomo RA et al. Infectious Diseases Society of America guidance on the treatment of AmpC β-Lactamase-producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin. Infect. Dis. 74(12), 2089–2114 (2022).
    • 6. Tamma PD, Aitken SL, Bonomo RA et al. Infectious Diseases Society of America guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 72(7), e169–e183 (2021). •• IDSA recommendations or treatments of MDR bacteria.
    • 7. Doi Y. Treatment options for carbapenem-resistant Gram-negative bacterial infections. Clin. Infect. Dis. 69(Suppl. 7), S565–S575 (2019).
    • 8. Ambler RP, Coulson AF, Frère J-M et al. A standard numbering scheme for the class A beta-lactamases. Biochem. J. 276(Pt 1), 269 (1991).
    • 9. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 31(2), e00079–e00017 (2018). • Treatment options for MDR pathogens.
    • 10. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54(3), 969–976 (2010).
    • 11. Tamma PD, Sharara SL, Pana ZD et al. Molecular epidemiology of ceftriaxone-nonsusceptible Enterobacterales isolates in an academic medical center in the United States. Open Forum. Infec. Dis. 6((8), ofz353 (2019).
    • 12. Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel. Med. 24(Suppl. 1), S44–S51 (2017).
    • 13. Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 58(2), 256–265 (2006).
    • 14. Rogers RG, Kammerer-Doak D, Olsen A et al. A randomized, double-blind, placebo-controlled comparison of the effect of nitrofurantoin monohydrate macrocrystals on the development of urinary tract infections after surgery for pelvic organ prolapse and/or stress urinary incontinence with suprapubic catheterization. Am. J. Obstet. Gynecol. 191(1), 182–187 (2004).
    • 15. Wenzler E, Bleasdale SC, Sikka M et al. Phase I study to evaluate the pharmacokinetics, safety, and tolerability of two dosing regimens of oral fosfomycin tromethamine in healthy adult participants. Antimicrob. Agents. Chemother. 62(8), e00464–e00418 (2018).
    • 16. Tamma PD, Conley AT, Cosgrove SE et al. Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia. JAMA Int. Med. 179(3), 316–323 (2019).
    • 17. Punjabi C, Tien V, Meng L et al. Oral fluoroquinolone or trimethoprim-sulfamethoxazole vs ß-lactams as step-down therapy for Enterobacteriaceae bacteremia: systematic review and meta-analysis. Open Forum. Infect. Dis. 6(10), ofz364 (2019).
    • 18. Tamma PD, Rodriguez-Baňo J. The use of noncarbapenem β-lactams for the treatment of extended-spectrum β-lactamase infections. Clin. Infect. Dis. 64(7), 972–980 (2017).
    • 19. Wang R, Cosgrove SE, Tschudin-Sutter S et al. Cefepime therapy for cefepime-susceptible extended-spectrum β-lactamase-producing Enterobacteriaceae bacteremia. Open Forum. Infect. Dis. 3(3), ofw132 (2016).
    • 20. Kaewpoowat Q, Ostrosky-Zeichner L. Tigecycline: a critical safety review. Expert Opin. Drug. Saf. 14(2), 335–342 (2015).
    • 21. Dixit D, Madduri RP, Sharma R. The role of tigecycline in the treatment of infections in light of the new black box warning. Expert Rev. Anti. Infect. Ther. 12(4), 397–400 (2014).
    • 22. Viaggi V, Pini B, Tonolo S et al. In vitro activity of ceftazidime/avibactam against clinical isolates of ESBL-producing Enterobacteriaceae in Italy. J. Chemother. 31(4), 195–201 (2019).
    • 23. van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin. Infect. Dis. 63(2), 234–241 (2016).
    • 24. Zhanel GG, Lawson CD, Adam H et al. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs 73(2), 159–177 (2013).
    • 25. Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J. Antimicrob. Chemother. 71(10), 2713–2722 (2016).
    • 26. Isler B, Ezure Y, Romero JLG-F et al. Is ceftazidime/avibactam an option for serious infections due to extended-spectrum-β-lactamase-and AmpC-producing Enterobacterales?: a systematic review and meta-analysis. Antimicrob. Agents Chemother. 65(1), e01052–e01020 (2020).
    • 27. Lasko MJ, Nicolau DP. Carbapenem-resistant Enterobacterales: considerations for treatment in the era of new antimicrobials and evolving enzymology. Curr. Infect. Dis. Rep. 22(3), 1–12 (2020).
    • 28. Hussain HI, Aqib AI, Seleem MN et al. Genetic basis of molecular mechanisms in β-lactam resistant Gram-negative bacteria. Microb. Pathog. 158, 105040 (2021).
    • 29. Bassetti M, Pilato VD, Giani T et al. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol. 15(15), 1489–1505 (2020).
    • 30. Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob. Agents Chemother. 64(10), e00397–e00320 (2020).
    • 31. Tumbarello M, Trecarichi EM, De Rosa FG et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 70(7), 2133–2143 (2015). • Treatment of KPC-producing Klebsiella pneumoniae.
    • 32. Underwood S, Avison MB. Citrobacter koseri and Citrobacter amalonaticus isolates carry highly divergent β-lactamase genes despite having high levels of biochemical similarity and 16S rRNA sequence homology. J. Antimicrob. Chemother. 53(6), 1076–1080 (2004).
    • 33. Petrella S, Clermont D, Casin I et al. Novel class A β-lactamase Sed-1 from Citrobacter sedlakii: genetic diversity of β-lactamases within the Citrobacter genus. Antimicrob. Agents Chemother. 45(8), 2287–2298 (2001).
    • 34. Matsen JM, Blazevic DJ, Ryan JA, Ewing WH. Characterization of indole-positive Proteus mirabilis. Appl. Microbiol. 23(3), 592–594 (1972).
    • 35. Sanders CC, Bradford PA, Ehrhardt AF et al. Penicillin-binding proteins and induction of AmpC β-lactamase. Antimicrob. Agents Chemother. 41(9), 2013–2015 (1997).
    • 36. Vena A, Castaldo N, Bassetti M. The role of new β-lactamase inhibitors in Gram-negative infections. Curr. Opin. Infect. Dis. 32(6), 638–646 (2019).
    • 37. Cheng L, Nelson BC, Mehta M et al. Piperacillin-tazobactam versus other antibacterial agents for treatment of bloodstream infections due to AmpC β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 61(6), e00276–e00217 (2017).
    • 38. Tato M, García-Castillo M, Bofarull AM et al. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa and Enterobacteriaceae recovered in Spanish medical centres: results of the CENIT study. Int. J. Antimicrob. Agents 46(5), 502–510 (2015).
    • 39. Sarshar M, Behzadi P, Scribano D et al. Acinetobacter baumannii: an ancient commensal with weapons of a pathogen. Pathogens 10(4), 387 (2021).
    • 40. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 10(3), 373 (2021).
    • 41. Noguchi J, Gill M. Sulbactam: a beta-lactamase inhibitor. Clin. Pharm. 7(1), 37–51 (1988).
    • 42. Tamma PD, Aitken SL, Bonomo RA et al. Infectious Diseases Society of America Guidance on the treatment of AmpC β-lactamase-producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin. Infect. Dis. 74(12), 2089–2114 (2022).
    • 43. Lenhard JR, Smith NM, Bulman ZP et al. High-dose ampicillin-sulbactam combinations combat polymyxin-resistant Acinetobacter baumannii in a hollow-fiber infection model. Antimicrob. Agents Chemother. 61(3), e01268–e01216 (2017).
    • 44. Lee Y-T, Wang Y-C, Kuo S-C et al. Multicenter study of clinical features of breakthrough Acinetobacter bacteremia during carbapenem therapy. Antimicrob. Agents Chemother. 61(9), e00931–e00917 (2017).
    • 45. Zha L, Pan L, Guo J et al. Effectiveness and safety of high dose tigecycline for the treatment of severe infections: a systematic review and meta-analysis. Adv. Ther. 37(3), 1049–1064 (2020).
    • 46. Wunderink RG, Matsunaga Y, Ariyasu M et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase III, non-inferiority trial. Lancet Infect. Dis. 21(2), 213–225 (2021).
    • 47. Paul M, Daikos GL, Durante-Mangoni E et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infec. Dis. 18(4), 391–400 (2018).
    • 48. Piperaki E-T, Tzouvelekis L, Miriagou V, Daikos G. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin. Microbiol. Infect. 25(8), 951–957 (2019).
    • 49. Park HJ, Cho JH, Kim HJ et al. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: a randomised controlled trial. J. Glob. Antimicrob. Rsist. 17, 66–71 (2019).
    • 50. Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 58(9), 5598–5601 (2014).
    • 51. Maselli DJ, Keyt H, Restrepo MI. Inhaled antibiotic therapy in chronic respiratory diseases. Int. J. Mol. Sci. 18(5), 1062 (2017).
    • 52. Hu Y-Y, Cao J-M, Yang Q et al. Risk factors for carbapenem-resistant Pseudomonas aeruginosa, Zhejiang Province, China. Emerg. Infect. Dis. 25(10), 1861 (2019).
    • 53. Walters MS, Grass JE, Bulens SN et al. Carbapenem-resistant Pseudomonas aeruginosa at US emerging infections program sites, 2015. Emerg. Infect. Dis. 25(7), 1281 (2019).
    • 54. Walkty A, Adam H, Baxter M et al. In vitro activity of plazomicin against 5015 Gram-negative and Gram-positive clinical isolates obtained from patients in Canadian hospitals as part of the CANWARD study, 2011-2012. Antimicrob. Agents Chemother. 58(5), 2554–2563 (2014).
    • 55. Howard-Anderson J, Bower CW, Smith G et al. Mortality in patients with carbapenem-resistant Pseudomonas aeruginosa with and without susceptibility to traditional antipseudomonal β-lactams. JAC Antimicrob. Resist. 3(4), dlab187 (2021).
    • 56. Chang Y-T, Lin C-Y, Chen Y-H, Hsueh P-R. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front. Microbiol. 6, 893 (2015).
    • 57. Tamma PD, Avdic E, Li DX et al. Association of adverse events with antibiotic use in hospitalized patients. JAMA Int. Med. 177(9), 1308–1315 (2017).
    • 58. Mojica MF, Rutter JD, Taracila M et al. Population structure, molecular epidemiology, and β-lactamase diversity among Stenotrophomonas maltophilia isolates in the United States. mBio 10(4), e00405–e00419 (2019).