We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Essential oil of Gallesia integrifolia is active against mycobacteria

    Débora C Montaholi

    *Author for correspondence:

    E-mail Address: deh.cassia@hotmail.com

    Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, 87020-900, Brazil

    ,
    Tamires L Valverde

    Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, 87020-900, Brazil

    ,
    Eloísa G Sampiron

    Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, 87020-900, Brazil

    ,
    Wanessa C Bortoluci

    Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Parana, 87502-210, Brazil

    ,
    Zilda C Gazim

    Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Parana, 87502-210, Brazil

    ,
    Katiany R Caleffi-Ferracioli

    Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, 87020-900, Brazil

    ,
    Regiane BL Scodro

    Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, 87020-900, Brazil

    ,
    Vera LD Siqueira

    Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, 87020-900, Brazil

    &
    Rosilene F Cardoso

    Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, 87020-900, Brazil

    Published Online:https://doi.org/10.2217/fmb-2022-0142

    Background: There is critical need for new therapeutic options for treatment of diseases caused by mycobacteria. Materials & methods:Gallesia integrifolia essential oils (EOs) and crude extracts (CEs) were tested for their anti-Mycobacterium tuberculosis and anti-nontuberculous mycobacteria activity. Results: Minimum inhibitory concentration (MIC) of EOs ranged from 15.63 to 62.5 μg/ml against M. tuberculosis and 62.5 to >250 μg/ml against nontuberculous mycobacteria. CEs showed low activity. All EO tested demonstrated synergism with antituberculosis drugs. The cytotoxicity of EOs and CEs, in different cell lines, showed selectivity index from 2.2 to 9.8 and >0.056 to 2.0, respectively. Conclusion:G. integrifolia EOs are a candidate for the development of new therapeutic options in the treatment of tuberculosis and other mycobacterial diseases.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Forbes BA. Mycobacterial taxonomy. J. Clin. Microbiol. 55(2), 380–383 (2017).
    • 2. World Health Organization. Global Tuberculosis Report (2020). https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (Accessed 3 June 2022).
    • 3. World Health Organization. Global Tuberculosis Report (2021). www.who.int/publications/digital/global-tuberculosis-report-2021/tb-disease-burden (Accessed 5 June 2022).
    • 4. Jakasania A, Shringarpure K, Kapadia D et al. Side effects-part of the package: a mixed methods approach to study adverse events among patients being programmatically treated for DR-TB in Gujarat, India. BMC Infect. Dis. 20(1), 1–12 (2020).
    • 5. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin. Microbiol. Rev. 27(4), 727–752 (2014).
    • 6. Saxena S, Spaink HP, Forn-Cuní G. Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology (Basel) 10(2), 96 (2021).
    • 7. Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. J. Thorac. Dis. 6(3), 210–220 (2014).
    • 8. Gygli SM, Borrell S, Trauner A et al. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol. Rev. 41(3), 354–373 (2017).
    • 9. Nasiri MJ, Haeili M, Ghazi M et al. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front. Microbiol. 8(1), 681 (2017).
    • 10. Pereira SG, Alarico S, Tiago I et al. Studies of antimicrobial resistance in rare mycobacteria from a nosocomial environment. BMC Microbiol. 19(1), 1–12 (2019).
    • 11. Coronado-Aceves EW, Sánchez-Escalante JJ, López-Cervantes J et al. Antimycobacterial activity of medicinal plants used by the Mayo people of Sonora, Mexico. J. Ethnopharmacol. 190(1), 106–115 (2016).
    • 12. Gupta VK, Kumar MM, Bisht D et al. Plants in our combating strategies against Mycobacterium tuberculosis: progress made and obstacles met. Pharm. Biol. 55(1), 1536–1544 (2017).
    • 13. Gupta VK, Kaushik A, Chauhan DS et al. Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms. J. Ethnopharmacol. 227(1), 113–120 (2018). • Describes composition, ethnopharmacological use and activity of extracts of Gallesia integrifolia.
    • 14. Arunachalam K, Ascêncio SD, Soares IM et al. Gallesia integrifolia (Spreng.) Harms: in vitro and in vivo antibacterial activities and mode of action. J. Ethnopharmacol. 184(1), 128–137 (2016).
    • 15. Raimundo KF, Bortolucci WC, Glamočlija J et al. Antifungal activity of Gallesia integrifolia fruit essential oil. Braz. J. Microbiol. 49(1), 229–235 (2018).
    • 16. Raimundo KF, Bortolucci WC, Silva ES et al. Chemical composition of garlic wood (Gallesia integrifolia) (Phytolaccaceae) volatile compounds and their activity on cattle tick. Aust. J. Crop Sci. 11(8), 1058–1067 (2017). • Describes the resazurin microtiter assay plate.
    • 17. Palomino J-C, Martin A, Camacho M et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46(8), 2720–2722 (2002).
    • 18. Scodro RBL, Pires CTA, Carrara VS et al. Anti-tuberculosis neolignans from Piper regnellii. Phytomedicine 20(7), 600–604 (2013).
    • 19. Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, Nocardia, and other aerobic Actinomycetes; approved standard – Second Edition. 2, 1–249 (2011). • Describes the resazurin drugs combination microtiter assay.
    • 20. Caleffi-Ferracioli KR, Maltempe FG, Siqueira VLD et al. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis 93(6), 660–663 (2013).
    • 21. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52(1), 1 (2003). • Describes the hemolysis assay.
    • 22. Sampiron EG, Costacurta GF, Baldin VP et al. Hydrazone, benzohydrazones and isoniazid-acylhydrazones as potential antituberculosis agents. Future Microbiol. 14(11), 981–994 (2019). • Describes the cytotoxicity assay.
    • 23. Valverde TL, Sampiron EG, Montaholi DC et al. 3,5-Dinitrobenzoylhydrazone derivatives as a scaffold for antituberculosis drug development. Future Microbiol. 17(4), 267–280 (2022).
    • 24. Arunachalam K, Balogun SO, Pavan EA et al. Chemical characterization, toxicology and mechanism of gastric antiulcer action of essential oil from Gallesia integrifolia (Spreng.) Harms in the in vitro and in vivo experimental models. Biomed. Pharmacother. 94(1), 292–306 (2017).
    • 25. Baldin VP, Scodro RBL, Fernandez M et al. Ginger essential oil and fractions against Mycobacterium spp. J. Ethnopharmacol. 244(1), 112095 (2019).
    • 26. Hegeto LA, Caleffi-Ferracioli KR, Nakamura-Vasconcelos SS et al. In vitro combinatory activity of piperine and anti-tuberculosis drugs in Mycobacterium tuberculosis. Tuberculosis 111(1), 35–40 (2018).
    • 27. Basaraba RJ, Hunter RL. Pathology of tuberculosis: how the pathology of human tuberculosis informs and directs animal models. Microbiol. Spectr. 5(3), 1–13 (2017).
    • 28. Baldwin SL, Larsenid SE, Ordway D et al. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl. Trop. Dis. 13(3), 1–23 (2019).
    • 29. Pang Y, Zheng H, Tan Y et al. In vitro activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob. Agents Chemother. 61(5), e02627–16 (2017).
    • 30. Peruč D, Gobin I, Abram M et al. Antimycobacterial potential of the juniper berry essential oil in tap water. Arh. Hig. Rada Toksikol. 69(1), 46–54 (2018).
    • 31. Bueno J, Escobar P, Martínez JR et al. Composition of three essential oils, and their mammalian cell toxicity and antimycobacterial activity against drug resistant-tuberculosis and nontuberculous mycobacteria strains. Nat. Prod. Commun. 6(11), 1743–1748 (2011).
    • 32. Pavan FR, Maia PIS, Leite SRA et al. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem. 45(5), 1898–1905 (2010).
    • 33. Rapido F. The potential adverse effects of haemolysis. Blood Transfus. 15(8), 218–221 (2017).
    • 34. Vo NNQ, Fukushima EO, Muranaka T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J. Nat. Med. 71(1), 50–58 (2017).
    • 35. Feng M, Tang B, Liang SH et al. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top Med. Chem. 16(11), 1200–1216 (2016).