We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Helicobacter pylori and gastric microbiota homeostasis: progress and prospects

    Zan Wang‡

    School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Shu-Li Shao‡

    Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Xiao-Han Xu

    School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China

    ,
    Xue Zhao

    School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China

    ,
    Ming-Yi Wang

    Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China

    ,
    Ai Chen

    **Author for correspondence:

    E-mail Address: chenai2378@163.com

    School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China

    Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China

    &
    Hai-Yan Cong

    *Author for correspondence:

    E-mail Address: haiyanstu@163.com

    School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China

    Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China

    Published Online:https://doi.org/10.2217/fmb-2022-0102

    Helicobacter pylori, a Gram-negative microaerobic bacteria belonging to the phylum Proteobacteria, can colonize in the stomach and duodenum, and cause a series of gastrointestinal diseases such as gastritis, gastric ulcer and even gastric cancer. At present, the high diversity of the microorganisms in the stomach has been confirmed with culture-independent methods; some researchers have also studied the stomach microbiota composition at different stages of H. pylori carcinogenesis. Here, we mainly review the possible role of H. pylori-mediated microbiota changes in the occurrence and development of gastric cancer to provide new ideas for preventing H. pylori infection and regulating microecological imbalance.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Bray F, Ferlay J, Soerjomataram I et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018).
    • 2. Ilic M, Ilic I. Epidemiology of stomach cancer. World J. Gastroenterol. 28(12), 1187–1203 (2022).
    • 3. Leja M, Grinberga-Derica I, Bilgilier C et al. Review: epidemiology of Helicobacter pylori infection. Helicobacter 24(Suppl. 1), e12635 (2019).
    • 4. Hooi JKY, Lai WY, Ng WK et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153(2), 420–429 (2017).
    • 5. Bouvard V, Baan R, Straif K et al. A review of human carcinogens – part B: biological agents. Lancet Oncol. 10(4), 321–322 (2009).
    • 6. Noto JM, Peek RM Jr. The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLOS Pathog. 13(10), e1006573 (2017).
    • 7. Petryszyn P, Chapelle N, Matysiak-Budnik T. Gastric cancer: where are we heading? Dig. Dis. 38(4), 280–285 (2020).
    • 8. Scott DR, Marcus EA, Weeks DL et al. Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 123(1), 187–195 (2002). • This paper describes the mechanism of urease in the pathogenesis of Helicobacter pylori.
    • 9. Xu C, Soyfoo DM, Wu Y et al. Virulence of Helicobacter pylori outer membrane proteins: an updated review. Eur. J. Clin. Microbiol. Infect. Dis. 39(10), 1821–1830 (2020).
    • 10. Ansari S, Yamaoka Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins (Basel) 11(11), 677 (2019).
    • 11. Ruan W, Engevik MA, Spinler JK et al. Healthy human gastrointestinal microbiome: composition and function after a decade of exploration. Dig. Dis. Sci. 65(3), 695–705 (2020).
    • 12. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375(24), 2369–2379 (2016).
    • 13. Xu HS, Roberts N, Singleton FL et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8(4), 313–323 (1982).
    • 14. Nardone G, Compare D. The human gastric microbiota: is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol. J. 3(3), 255–260 (2015).
    • 15. Bik EM, Eckburg PB, Gill SR et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103(3), 732–737 (2006).
    • 16. Zhernakova A, Kurilshikov A, Bonder MJ et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285), 565–569 (2016).
    • 17. Falony G, Joossens M, Vieira-Silva S et al. Population-level analysis of gut microbiome variation. Science 352(6285), 560–564 (2016).
    • 18. Johnson JS, Spakowicz DJ, Hong BY et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029 (2019).
    • 19. Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 5(4), 574–579 (2011).
    • 20. Eun CS, Kim BK, Han DS et al. Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter 19(6), 407–416 (2014).
    • 21. Schulz C, Schütte K, Mayerle J et al. The role of the gastric bacterial microbiome in gastric cancer: helicobacter pylori and beyond. Therap. Adv. Gastroenterol. 12, 1756284819894062 (2019).
    • 22. Baj J, Forma A, Sitarz M et al. Helicobacter pylori virulence factors – mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 10(1), 27 (2020).
    • 23. Fischer W, Tegtmeyer N, Stingl K et al. Four chromosomal type IV secretion systems in Helicobacter pylori: composition, structure and function. Front. Microbiol. 11, 1592 (2020).
    • 24. Azuma T, Ohtani M, Yamazaki Y et al. Meta-analysis of the relationship between CagA seropositivity and gastric cancer. Gastroenterology 126(7), 1926–1928 (2004).
    • 25. Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol. 13, 1041–1054 (2018).
    • 26. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz. Gastroenterol. 14(1), 26–38 (2019).
    • 27. Argent RH, Kidd M, Owen RJ et al. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology 127(2), 514–523 (2004).
    • 28. Franco AT, Johnston E, Krishna U et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 68(2), 379–387 (2008).
    • 29. Rizzato C, Torres J, Obazee O et al. Variations in cag pathogenicity island genes of Helicobacter pylori from Latin American groups may influence neoplastic progression to gastric cancer. Sci. Rep. 10(1), 6570 (2020).
    • 30. Figueiredo C, Machado JC, Pharoah P et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J. Natl Cancer Inst. 94(22), 1680–1687 (2002).
    • 31. Winter JA, Letley DP, Cook KW et al. A role for the vacuolating cytotoxin, VacA, in colonization and Helicobacter pylori-induced metaplasia in the stomach. J. Infect. Dis. 210(6), 954–963 (2014).
    • 32. Matsunaga S, Nishiumi S, Tagawa R et al. Alterations in metabolic pathways in gastric epithelial cells infected with Helicobacter pylori. Microb. Pathog. 124, 122–129 (2018).
    • 33. Keilberg D, Steele N, Fan S et al. Gastric metabolomics detects Helicobacter pylori correlated loss of numerous metabolites in both the corpus and antrum. Infect. Immun. 89(2), e00690-20 (2021).
    • 34. Matsuoka K, Nishiumi S, Yoshida M et al. Effects of Helicobacter pylori on the glutathione-related pathway in gastric epithelial cells. Biochem. Biophys. Res. Commun. 526(4), 1118–1124 (2020).
    • 35. Kim KM, Lee SG, Park MG et al. Gamma-glutamyltranspeptidase of Helicobacter pylori induces mitochondria-mediated apoptosis in AGS cells. Biochem. Biophys. Res. Commun. 355(2), 562–567 (2007).
    • 36. Lee WC, Goh KL, Loke MF et al. Elucidation of the metabolic network of Helicobacter pylori J99 and Malaysian clinical strains by phenotype microarray. Helicobacter 22(1), e12321 (2017).
    • 37. Yu Q, Wang X, Wang L et al. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells. Scand. J. Gastroenterol. 51(10), 1220–1226 (2016).
    • 38. Nardone G, Compare D. The human gastric microbiota: is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol. J. 3(3), 255–260 (2015).
    • 39. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315 (1984).
    • 40. Prewett EJ, Bickley J, Owen RJ et al. DNA patterns of Helicobacter pylori isolated from gastric antrum, body, and duodenum. Gastroenterology 102(3), 829–833 (1992).
    • 41. Rajilic-Stojanovic M, Figueiredo C, Smet A et al. Systematic review: gastric microbiota in health and disease. Aliment. Pharmacol. Ther. 51(6), 582–602 (2020).
    • 42. Coker OO, Dai Z, Nie Y et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 67(6), 1024–1032 (2018).
    • 43. Castaño-Rodríguez N, Goh KL, Fock KM et al. Dysbiosis of the microbiome in gastric carcinogenesis. Sci. Rep. 7(1), 15957 (2017).
    • 44. Cover TL, Blaser MJ. Helicobacter pylori in health and disease. Gastroenterology 136(6), 1863–1873 (2009).
    • 45. Bytzer P, Dahlerup JF, Eriksen JR et al. Diagnosis and treatment of Helicobacter pylori infection. Dan. Med. Bull. 58, C4271 (2011).
    • 46. Katsurahara M, Kobayashi Y, Iwasa M et al. Reactive nitrogen species mediate DNA damage in Helicobacter pylori-infected gastric mucosa. Helicobacter 14, 552–558 (2009).
    • 47. Gunathilake MN, Lee J, Choi IJ et al. Association between the relative abundance of gastric microbiota and the risk of gastric cancer: a case-control study. Sci. Rep. 9(1), 13589 (2019).
    • 48. Zhang X, Li C, Cao W et al. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front. Cell. Infect. Microbiol. 11, 559148 (2021). •• This article reviews the effect of H. pylori on gastric microbiota and its relationship with the development of gastric cancer.
    • 49. Das A, Pereira V, Saxena S et al. Gastric microbiome of Indian patients with Helicobacter pylori infection, and their interaction networks. Sci. Rep. 7(1), 15438 (2017).
    • 50. Correa P, Piazuelo MB. The gastric precancerous cascade. J. Dig. Dis. 13(1), 2–9 (2012).
    • 51. Beales I, Blaser MJ, Srinivasan S et al. Effect of Helicobacter pylori products on gastrinrelease from cultured canine G cells. Gastroenterology 113(2), 465–471 (1997).
    • 52. El-Omar EM, Penman ID et al. Helicobacter pylori infection and abnormalities of acid secretion in patients with duodenal ulcer disease. Gastroenterology 109, 681–691 (1995).
    • 53. Mustapha P, Paris I, Garcia M et al. Chemokines and antimicrobial peptides have a cag-dependent early response to Helicobacter pylori infection in primary human gastric epithelial cells. Infect. Immun. 82(7), 2881–2889 (2014).
    • 54. Wehkamp J, Schmidt K, Herrlinger KR et al. Defensin pattern in chronic gastritis: HBD-2 is differentially expressed with respect to helicobacter Hp status. J. Clin. Pathol. 55, 352–357 (2003).
    • 55. Seo EJ, Weibel S, Wehkamp J et al. Construction of recombinant E. coli nissle 1917 (EcN) strains for the expression and secretion of defensins. Int. J. Med. Microbiol. 302, 276–287 (2012).
    • 56. Tan MP, Kaparakis M, Galic M et al. Chronic Helicobacter pylori infection does not significantly alter the microbiota of the murine stomach. Appl. Environ. Microbiol. 73(3), 1010–1013 (2007).
    • 57. Schulz C, Schütte K, Koch N et al. The active bacterial assemblages of the upper GI tract in individuals with and without Helicobacter infection. Gut 67(2), 216–225 (2018).
    • 58. Chen YL, Mo XQ, Huang GR et al. Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal diseases. World J. Gastroenterol. 22(44), 9718–9726 (2016).
    • 59. Zhao Y, Gao X, Guo J et al. Helicobacter pylori infection alters gastric and tongue coating microbial communities. Helicobacter 24(2), e12567 (2019).
    • 60. Wang Z, Gao X, Zeng R et al. Changes of the gastric mucosal microbiome associated with histological stages of gastric carcinogenesis. Front. Microbiol. 11, 997 (2020).
    • 61. Wyatt JI, Rathbone BJ, Dixon MF et al. Campylobacter pyloridis and acid induced gastric metaplasia in the pathogenesis of duodenitis. J. Clin. Pathol. 40(8), 841–848 (1987).
    • 62. Marshall BJ, Barrett LJ, Prakash K et al. Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 99, 697–702 (1990).
    • 63. Vermeer IT, Engels LG et al. Intragastric volatile N-nitrosamines, nitrite, pH, and Helicobacter pylori during long-term treatment with omeprazole. Gastroenterology 121(3), 517–525 (2001).
    • 64. Smolka AJ, Backert S. How Helicobacter pylori infection controls gastric acid secretion. J. Gastroenterol. 47(6), 609–618 (2012).
    • 65. Celli JP, Turner BS, Afdhal NH et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA 106(34), 14321–14326 (2009).
    • 66. Yao X, Smolka AJ. Gastric parietal cell physiology and Helicobacter pylori-induced disease. Gastroenterology 156(8), 2158–2173 (2019).
    • 67. Zaki M, Coudron PE, McCuen RW et al. H. pylori acutely inhibits gastric secretion by activating CGRP sensory neurons coupled to stimulation of somatostatin and inhibition of histamine secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 304(8), G715–G722 (2013).
    • 68. Sachs G, Kraut JA, Wen Y et al. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J. Membr. Biol. 212, 71–82 (2006).
    • 69. Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter 22(Suppl. 1), e12405 (2017).
    • 70. Hirota K, Nagata K, Norose Y et al. Identification of an antigenic epitope in Helicobacter pylori urease that induces neutralizing antibody production. Infect. Immun. 69(11), 6597–6603 (2001).
    • 71. Ha NC, Oh ST, Sung JY et al. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Biol. 8(6), 505–509 (2001).
    • 72. Moreno-Ochoa MF, Valencia ME, Morales-Figueroa GG et al. [Association of cagA+ Helicobacter pylori strains with high urease activity and dyspepsia in Mexican adults.] Rev. Gastroenterol. Mex (Engl Ed.) 85(4), 404–409 (2020).
    • 73. Aebischer T, Fischer A, Walduck A et al. Vaccination prevents Helicobacter pylori-induced alterations of the gastric flora in mice. FEMS Immunol. Med. Microbiol. 46(2), 221–229 (2006).
    • 74. Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: an overview of bacterial virulence factors and pathogenesis. Biomed. J. 39(1), 14–23 (2016).
    • 75. Wu CH, Huang MY, Yeh CS et al. Overexpression of Helicobacter pylori-associated urease mRNAs in human gastric cancer. DNA Cell Biol. 26(9), 641–648 (2007).
    • 76. Debowski AW, Walton SM, Chua EG et al. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection. PLOS Pathog. 13(6), e1006464 (2017). • This paper demonstrates the importance of urease in chronic infection of H. pylori using gene-silencing techniques.
    • 77. Suzuki M, Miura S, Suematsu M et al. Helicobacter pylori-associated ammonia production enhances neutrophil-dependent gastric mucosal cell injury. Am. J. Physiol. 263(5 Pt 1), G719–G725 (1992).
    • 78. Kuwahara H, Miyamoto Y, Akaike T et al. Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect. Immun. 68(8), 4378–4383 (2000).
    • 79. Schoep TD, Fulurija A, Good F et al. Surface properties of Helicobacter pylori urease complex are essential for persistence. PLOS ONE 5(11), e15042 (2010).
    • 80. Peek RM Jr, Fiske C, Wilson KT. Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol. Rev. 90(3), 831–858 (2010).
    • 81. de Jesus Souza M, de Moraes JA, Da Silva VN et al. Helicobacter pylori urease induces pro-inflammatory effects and differentiation of human endothelial cells: cellular and molecular mechanism. Helicobacter 24(3), e12573 (2019).
    • 82. Smolka AJ, Schubert ML. Helicobacter pylori-induced changes in gastric acid secretion and upper gastrointestinal disease. Curr. Top. Microbiol. Immunol. 400, 227–252 (2017).
    • 83. Naito Y, Yoshikawa T. Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress. Free Radic. Biol. Med. 33(3), 323–336 (2002).
    • 84. Brawner KM, Kumar R, Serrano CA et al. Helicobacter pylori infection is associated with an altered gastric microbiota in children. Mucosal. Immunol. 10(5), 1169–1177 (2017).
    • 85. Mukaisho K, Nakayama T, Hagiwara T et al. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids. Front. Microbiol. 6, 412 (2015).
    • 86. Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun. 22(4), 218–226 (2021).
    • 87. Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146(6), 1449–1458 (2014).
    • 88. Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLOS ONE 7(6), e28742 (2012).
    • 89. Hehemann JH, Kelly AG, Pudlo NA et al. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl Acad Sci. USA 109(48), 19786–19791 (2012).
    • 90. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20(5), 779–786 (2014).
    • 91. Barcik W, Wawrzyniak M, Akdis CA et al. Immune regulation by histamine and histamine-secreting bacteria. Curr. Opin. Immunol. 48, 108–113 (2017).
    • 92. Zhang C, Xiong Y, Li J et al. Deletion and down-regulation of HRH4 gene in gastric carcinomas: a potential correlation with tumor progression. PLOS ONE 7(2), e31207 (2012).
    • 93. Kawakubo M, Horiuchi K, Matsumoto T et al. Cholesterol-α-glucosyltransferase gene is present in most Helicobacter species including gastric non-Helicobacter pylori helicobacters obtained from Japanese patients. Helicobacter 23(1), e12449 (2018).
    • 94. Peng X, Zhou L, Gong Y et al. Non-pylori Helicobacters (NHPHs) induce shifts in gastric microbiota in Helicobacter pylori-infected patients. Front. Microbiol. 8, 1038 (2017). •• This study suggests that non-pyloriHelicobacters may cause changes in the structure and function of gastric microbiota.
    • 95. Vinasco K, Mitchell HM, Kaakoush NO et al. Microbial carcinogenesis: lactic acid bacteria in gastric cancer. Biochim. Biophys. Acta. Rev. Cancer 1872(2), 188309 (2019).
    • 96. Malfertheiner P, Megraud F, O'Morain CA et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 66(1), 6–30 (2017).
    • 97. Tao ZH, Han JX, Fang JY. Helicobacter pylori infection and eradication: exploring their impacts on the gastrointestinal microbiota. Helicobacter 25(6), e12754 (2020).
    • 98. Amir I, Konikoff FM, Oppenheim M et al. Gastric microbiota is altered in oesophagitis and Barrett's oesophagus and further modified by proton pump inhibitors. Environ. Microbiol. 16(9), 2905–2914 (2014).
    • 99. Haastrup P, Paulsen MS, Begtrup LM et al. Strategies for discontinuation of proton pump inhibitors: a systematic review. Fam. Pract. 31(6), 625–630 (2014).
    • 100. Schulz C, Schütte K, Malfertheiner P. Helicobacter pylori and other gastric microbiota in gastroduodenal pathologies. Dig. Dis. 34(3), 210–216 (2016).
    • 101. Eusebi LH, Rabitti S, Artesiani ML et al. Proton pump inhibitors: risks of long-term use. J. Gastroenterol. Hepatol. 32(7), 1295–1302 (2017).
    • 102. Saxena A, Mukhopadhyay AK, Nandi SP. Helicobacter pylori: perturbation and restoration of gut microbiome. J. Biosci. 45(1), 110 (2020).
    • 103. He C, Peng C, Wang H et al. The eradication of Helicobacter pylori restores rather than disturbs the gastrointestinal microbiota in asymptomatic young adults. Helicobacter 24(4), e12590 (2019).
    • 104. Lertpiriyapong K, Whary MT, Muthupalani S et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 63(1), 54–63 (2014).
    • 105. Yang JC, Lu CW, Lin CJ. Treatment of Helicobacter pylori infection: current status and future concepts. World J. Gastroenterol. 20(18), 5283–5293 (2014).
    • 106. Espinoza JL, Matsumoto A, Tanaka H et al. Gastric microbiota: an emerging player in Helicobacter pylori-induced gastric malignancies. Cancer Lett. 414, 147–152 (2018).
    • 107. Sung JJY, Coker OO, Chu E et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut 69(9), 1572–1580 (2020). •• This study reports on bacterial diversity before and after H. pylori eradication, suggesting that other gastric microorganisms may be involved in the development of gastric cancer.
    • 108. Liu X, Shao L, Liu X et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine 40, 336–348 (2019).
    • 109. Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67(2), 226–236 (2018).
    • 110. Gopalakrishnan V, Helmink BA, Spencer CN et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4), 570–580 (2018).
    • 111. Zuo T, Wong SH, Lam K et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67(4), 634–643 (2018).
    • 112. Rutten NB, Gorissen DM, Eck A et al. Long term development of gut microbiota composition in atopic children: impact of probiotics. PLOS ONE 10(9), e0137681 (2015).
    • 113. Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R et al. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep. 4, 4202 (2014).
    • 114. Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 10(10), 717–725 (2012).
    • 115. Schwabe RF, Jobin C. The microbiome and cancer. Nat. Rev. Cancer 13(11), 800–812 (2013).
    • 116. Jo HJ, Kim J, Kim N et al. Analysis of gastric microbiota by pyrosequencing: minor role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. Helicobacter 21(5), 364–374 (2016).
    • 117. Pan KF, Zhang L, Gerhard M et al. A large randomised controlled intervention trial to prevent gastric cancer by eradication of Helicobacter pylori in Linqu County, China: baseline results and factors affecting the eradication. Gut 65(1), 9–18 (2016).
    • 118. Miyata N, Hayashi Y, Hayashi S et al. Lipopolysaccharides from non-Helicobacter pylori gastric bacteria potently stimulate interleukin-8 production in gastric epithelial cells. Clin. Transl. Gastroenterol. 10(3), e00024 (2019).
    • 119. Beswick EJ, Pinchuk IV, Minch K et al. The Helicobacter pylori urease B subunit binds to CD74 on gastric epithelial cells and induces NF-κB activation and interleukin-8 production. Infect. Immun. 74(2), 1148–1155 (2006).
    • 120. Fu H, Ma Y, Yang M et al. Persisting and increasing neutrophil infiltration associates with gastric carcinogenesis and E-cadherin downregulation. Sci. Rep. 6, 29762 (2016).
    • 121. Asgari B, Kermanian F, Hedayat Yaghoobi M et al. The anti-Helicobacter pylori effects of Lactobacillus acidophilus, L. plantarum, and L. rhamnosus in stomach tissue of C57BL/6 mice. Visc. Med. 36(2), 137–143 (2020).
    • 122. Khosravi Y, Dieye Y, Loke MF et al. Streptococcus mitis induces conversion of Helicobacter pylori to coccoid cells during co-culture in vitro. PLOS ONE 9(11), e112214 (2014).
    • 123. Banna GL, Torino F, Marletta F et al. Lactobacillus rhamnosus GG: an overview to explore the rationale of its use in cancer. Front. Pharmacol. 8, 603 (2017).
    • 124. Ryan KA, Daly P, Li Y et al. Strain-specific inhibition of Helicobacter pylori by Lactobacillus salivarius and other lactobacilli. J. Antimicrob. Chemother. 61(4), 831–834 (2008).
    • 125. Pereira V, Abraham P, Nallapeta S et al. Gastric bacterial flora in patients harbouring Helicobacter pylori with or without chronic dyspepsia: analysis with matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. BMC Gastroenterol. 18(1), 20 (2018).
    • 126. Qumar S, Nguyen TH, Nahar S et al. A comparative whole genome analysis of Helicobacter pylori from a human dense south Asian setting. Helicobacter 26(1), e12766 (2021).
    • 127. Mu DS, Liang QY, Wang XM et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 6(1), 230 (2018).
    • 128. Schmidt F, Zimmermann J, Tanna T et al. Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science 376(6594), eabm6038 (2022).