We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Tree-inhabiting polypore fungi as sources of a cornucopia of bioactive compounds

    Vincenzo Costanzo‡

    Department of Experimental, Diagnostic & Specialty Medicine, University of Bologna Alma Mater Studiorum, Via Zamboni 33, Bologna, 40126, Italy

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Melinda Gilhen-Baker‡

    Faculty of Physical Medicine & Rehabilitation, Georgian State Teaching University of Physical Education & Sport, 49, Chavchavadze avenue, Tbilisi, 0162, Georgia

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Diana Beresford-Kroeger

    Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada

    &
    Giovanni N Roviello

    *Author for correspondence: Tel.: +39 349 192 8417;

    E-mail Address: giroviel@unina.it

    Institute of Biostructures & Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca site & Headquarters, Via Pietro Castellino 111, Naples, 80131, Italy

    Published Online:https://doi.org/10.2217/fmb-2022-0098
    Free first page

    References

    • 1. Gilhen-Baker M, Roviello V, Beresford-Kroeger D, Roviello GN. Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environ. Chem. Lett. 20(2), 1529–1538 (2022).
    • 2. Grunewald F, Steinborn C, Huber R et al. Effects of Birch Polypore Mushroom, Piptoporus betulinus (Agaricomycetes), the “Iceman's Fungus”, on human immune cells. Int. J. Med. Mushrooms 20(12), 1135–1147 (2018).
    • 3. Girometta C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review. Mycology 10(1), 32–39 (2018).
    • 4. Piętka J, Grzywacz A. In situ inoculation of larch with the threatened wood-decay fungus Fomitopsis officinalis (Basidiomycota) – experimental studies. Pol. Bot. J. 50(2), 225–231 (2005).
    • 5. Slomski A. Trials test mushrooms and herbs as anti-COVID-19 agents. JAMA 326(20), 1997 (2021).
    • 6. Roviello V, Roviello GN. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ. Chem. Lett. 19(1), 699–710 (2020).
    • 7. Unlu A, Nayir E, Kirca O, Ozdogan M. Ganoderma lucidum (reishi mushroom) and cancer. J. BUON 21(4), 792–798 (2016).
    • 8. Jin H, Jin F, Jin J-X et al. Protective effects of Ganoderma lucidum spore on cadmium hepatotoxicity in mice. Food Chem. Toxicol. 52, 171–175 (2013).
    • 9. Stamets PE. Medicinal polypores of the forests of North America: screening for novel antiviral activity. Int. J. Med. Mushrooms 7(3), 362 (2005).
    • 10. Grienke U, Zöll M, Peintner U, Rollinger JM. European medicinal polypores – a modern view on traditional uses. J. Ethnopharmacol. 154(3), 564–583 (2014).
    • 11. Muszyńska B, Fijałkowska A, Sułkowska‐Ziaja K et al. Fomitopsis officinalis: a species of arboreal mushroom with promising biological and medicinal properties. Chem. Biodivers. 17(6), e2000213 (2020).
    • 12. Rai MK, Gaikwad S, Nagaonkar D, dos Santos CA. Current advances in the antimicrobial potential of species of genus Ganoderma (higher Basidiomycetes) against human pathogenic microorganisms (review). Int. J. Med. Mushrooms 17(10), 921–932 (2015).
    • 13. Grienke U, Kaserer T, Pfluger F et al. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry 114, 114–124 (2015).
    • 14. Zjawiony JK. Biologically active compounds from Aphyllophorales (Polypore) fungi. J. Nat. Prod. 67(2), 300–310 (2004).
    • 15. Tochikura TS, Nakashima H, Ohashi Y, Yamamoto N. Inhibition (in vitro) of replication and of the cytopathic effect of human immunodeficiency virus by an extract of the culture medium of Lentinus edodes mycelia. Med. Microbiol. Immunol. 177(5), 235–244 (1988).
    • 16. Ikekawa T, Uehara N, Maeda Y, Nakanishi M, Fukuoka F. Antitumor activity of aqueous extracts of edible mushrooms. Cancer Res. 29(3), 734–735 (1969).
    • 17. Mizuno T. Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev. Int. 11(1), 5–21 (1995).
    • 18. Tsukagoshi S. Krestin (PSK). Cancer Treat. Rev. 11(2), 131–155 (1984).
    • 19. Lu H, Yang Y, Gad E et al. Polysaccharide krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clin. Cancer Res. 17(1), 67–76 (2011).
    • 20. Bleha R, Třešnáková L, Sushytskyi L et al. Polysaccharides from basidiocarps of the polypore fungus Ganoderma resinaceum: isolation and structure. Polymers 14(2), 255 (2022).
    • 21. Gow NAR, Latge J-P, Munro CA, Heitman J. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5(3), 5–3 (2017).