We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Klebsiella pneumoniae: an update on antibiotic resistance mechanisms

    Morteza Karami-Zarandi

    Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956111, Iran

    ,
    Hossein Ali Rahdar

    Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, 7618815676, Iran

    ,
    Hadi Esmaeili

    Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran

    &
    Reza Ranjbar

    *Author for correspondence: Tel.: +98 218 803 9883;

    E-mail Address: ranjbarre@gmail.com

    Molecular Biology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran

    Published Online:https://doi.org/10.2217/fmb-2022-0097

    Klebsiella pneumoniae colonizes mucosal surfaces of healthy humans and is responsible for one third of all Gram-negative infections in hospitalized patients. K. pneumoniae is compatible with acquiring antibiotic resistance elements such as plasmids and transposons encoding various β-lactamases and efflux pumps. Mutations in different proteins such as β-lactamases, efflux proteins, outer membrane proteins, gene replication enzymes, protein synthesis complexes and transcription enzymes also generate resistance to antibiotics. Biofilm formation is another strategy that facilitates antibiotic resistance. Resistant strains can be treated by combination therapy using available antibiotics, though proper management of antibiotic consumption in hospitals is important to reduce the emergence and proliferation of resistance to current antibiotics.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ranjbar R, Izadi M, Hafshejani TT, Khamesipour F. Molecular detection and antimicrobial resistance of Klebsiella pneumoniae from house flies (Musca domestica) in kitchens, farms, hospitals and slaughterhouses. J. Infect. Public Health 9(4), 499–505 (2016).
    • 2. Dupont H, Gaillot O, Goetgheluck AS et al. Molecular characterization of carbapenem-nonsusceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime–avibactam and aztreonam–avibactam combinations. Antimicrob. Agents Chemother. 60(1), 215–221 (2016).
    • 3. Tumbarello M, Trecarichi EM, De Rosa FG et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 70(7), 2133–2143 (2015).
    • 4. Lv L, Wan M, Wang C et al. Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae. mBio 11(2), e02930–19 (2020). • A good description and example of emergence of plasmid encoded efflux pumps.
    • 5. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 41(3), 252–275 (2017).
    • 6. Wang G, Zhao G, Chao X, Xie L, Wang H. The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health. 17(17), 6278 (2020).
    • 7. Rahdar HA, Malekabad ES, Dadashi AR et al. Correlation between biofilm formation and carbapenem resistance among clinical isolates of Klebsiella pneumoniae. Ethiop. J. Health Sci. 29(6), 745–750 (2019). •• The article describes the association between biofilm and antibiotic resistance very well.
    • 8. Clegg S, Murphy CN. Epidemiology and virulence of Klebsiella pneumoniae. Microbiol. Spectr. 4(1), 1–17 (2016).
    • 9. Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3(3), 743–758 (2014).
    • 10. Sanchez CJ Jr, Mende K, Beckius ML et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13, 47 (2013).
    • 11. Fonseca AP, Extremina C, Fonseca AF, Sousa JC. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J. Med. Microbiol. 53(Pt 9), 903–910 (2004).
    • 12. Naparstek L, Carmeli Y, Navon-Venezia S, Banin E. Biofilm formation and susceptibility to gentamicin and colistin of extremely drug-resistant KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 69(4), 1027–1034 (2014).
    • 13. Hennequin C, Robin F, Cabrolier N, Bonnet R, Forestier C. Characterization of a DHA-1-producing Klebsiella pneumoniae strain involved in an outbreak and role of the AmpR regulator in virulence. Antimicrob. Agents Chemother. 56(1), 288–294 (2012).
    • 14. Skillman LC, Sutherland IW, Jones MV. The role of exopolysaccharides in dual species biofilm development. J. Appl. Microbiol. 85(Suppl. 1), S13–S18 (1998).
    • 15. Macleod SM, Stickler DJ. Species interactions in mixed-community crystalline biofilms on urinary catheters. J. Med. Microbiol. 56(pt 11), 1549–1557 (2007).
    • 16. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 72(8), 2145–2155 (2017).
    • 17. Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin. Microbiol. Rev. 26(4), 744–758 (2013).
    • 18. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11(6), 315–317 (1983).
    • 19. Sirot D, Sirot J, Labia R et al. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. J. Antimicrob. Chemother. 20(3), 323–334 (1987).
    • 20. Turner PJ. Extended-spectrum β-lactamases. Clin. Infec. Dis. 41(Suppl. 4), S273–S275 (2005).
    • 21. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14(4), 933–951; table of contents (2001).
    • 22. Philippon A, Slama P, Dény P, Labia R. A structure-based classification of class A β-lactamases, a broadly diverse family of enzymes. Clin. Microb. Rev. 29(1), 29–57 (2016).
    • 23. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 7, 895 (2016). •• The article describes the complexity of antibiotic resistance to Klebsiella properly.
    • 24. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microb. Rev. 20(3), 440–458 (2007).
    • 25. Haruta S, Yamaguchi H, Yamamoto ET et al. Functional analysis of the active site of a metallo-β-lactamase proliferating in Japan. Antimicrob. Agents Chemother. 44(9), 2304–2309 (2000).
    • 26. Lu MC, Tang HL, Chiou CS, Wang YC, Chiang MK, Lai YC. Clonal dissemination of carbapenemase-producing Klebsiella pneumoniae: two distinct sub-lineages of Sequence Type 11 carrying bla(KPC-2) and bla(OXA-48). Int. J. Antimicrob. Agents. 52(5), 658–662 (2018).
    • 27. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48(1), 15–22 (2004).
    • 28. Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53(12), 5046–5054 (2009).
    • 29. Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin. Microb. Rev. 32(2), e00115–e00118 (2019).
    • 30. Yigit H, Queenan AM, Anderson GJ et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45(4), 1151–1161 (2001).
    • 31. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin. Microb. Rev. 28(3), 565–591 (2015).
    • 32. Sidjabat HE, Silveira FP, Potoski BA et al. Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient. Clin. Infec. Dis. 49(11), 1736–1738 (2009).
    • 33. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 54(1), 177–183 (2010).
    • 34. Leavitt A, Chmelnitsky I, Colodner R, Ofek I, Carmeli Y, Navon-Venezia S. Ertapenem resistance among extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates. J. Clin. Microb. 47(4), 969–974 (2009).
    • 35. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother. 41(3), 563–569 (1997).
    • 36. Andersson DI, Hughes D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 35(5), 901–911 (2011).
    • 37. Muhammed M, Flokas ME, Detsis M, Alevizakos M, Mylonakis E. Comparison between carbapenems and β-lactam/β-lactamase inhibitors in the treatment for bloodstream infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: a systematic review and meta-analysis. Open Forum Infect Dis. 4(2), 1–8 (2017).
    • 38. Galani I, Karaiskos I, Giamarellou H. Multidrug-resistant Klebsiella pneumoniae: mechanisms of resistance including updated data for novel β-lactam-β-lactamase inhibitor combinations. Expert Rev. Anti Infect. Ther. 19(11), 1457–1468 (2021).
    • 39. Kang C-I, Park SY, Chung DR, Peck KR, Song J-H. Piperacillin–tazobactam as an initial empirical therapy of bacteremia caused by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J. Infect. 64(5), 533–534 (2012).
    • 40. Göttig S, Frank D, Mungo E et al. Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo. J. Antimicrob. Chemother. 74(11), 3211–3216 (2019). • The article describes a novel resistance mechanism antibiotic resistance against new antibiotic ceftazidime/avibactam.
    • 41. Maraki S, Mavromanolaki VE, Moraitis P et al. Ceftazidime–avibactam, meropenen–vaborbactam, and imipenem–relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae. Eur. J. Clin. Microbiol. 1–5 (2021).
    • 42. Abdelraouf K, Chavda KD, Satlin MJ, Jenkins SG, Kreiswirth BN, Nicolau DP. Piperacillin–tazobactam-resistant/third-generation cephalosporin-susceptible Escherichia coli and Klebsiella pneumoniae isolates: resistance mechanisms and in vitroin vivo discordance. Int. J. Antimicrob. Agents 55(3), 105885 (2020). • The article describes the mechanisms underlying resistance against TZP and difficulties in MIC testing properly.
    • 43. Vu CH, Venugopalan V, Santevecchi BA et al. Re-evaluation of cefepime or piperacillin–tazobactam to decrease use of carbapenems in extended-spectrum β-lactamase-producing Enterobacterales bloodstream infections (REDUCE-BSI). Antimicrob. Steward. Healthc. Epidemiol. 2(1), e39 (2022).
    • 44. Bialek-Davenet S, Lavigne JP, Guyot K et al. Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J. Antimicrob. Chemother. 70(1), 81–88 (2015).
    • 45. Castanheira M, Deshpande LM, Mills JC et al. Klebsiella pneumoniae isolate from a New York City hospital belonging to sequence type 258 and carrying blaKPC-2 and blaVIM-4. Antimicrob. Agents Chemother. 60(3), 1924–1927 (2016).
    • 46. Han MS, Park KS, Jeon JH et al. SHV hyperproduction as a mechanism for piperacillin–tazobactam resistance in extended-spectrum cephalosporin-susceptible Klebsiella pneumoniae. Microb. Drug Resist. 26(4), 334–340 (2020).
    • 47. Hubbard ATM, Mason J, Roberts P et al. Piperacillin/tazobactam resistance in a clinical isolate of Escherichia coli due to IS26-mediated amplification of bla(TEM-1B). Nat. Commun. 11(1), 4915 (2020).
    • 48. Fujita A, Kimura K, Yokoyama S et al. Characterization of piperacillin/tazobactam-resistant Klebsiella oxytoca recovered from a nosocomial outbreak. PLOS ONE 10(11), e0142366 (2015).
    • 49. Stainton SM, Monogue ML, Nicolau DP. In vitro–in vivo discordance with humanized piperacillin–tazobactam exposures against piperacillin–tazobactam-resistant/pan-β-lactam-susceptible Klebsiella pneumoniae strains. Antimicrob. Agents Chemother. 61(7), e00491–17 (2017).
    • 50. Henderson A, Humphries R. Building a better test for piperacillin–tazobactam susceptibility testing: would that it were so simple (it's complicated). J. Clin. Microbiol. 58(2), e01649–19 (2020). • The article describes the mechanisms underlying resistance against piperacillin–tazobactam and difficulties in MIC testing properly.
    • 51. García-Fernández S, Bala Y, Armstrong T et al. Multicenter evaluation of the new Etest gradient diffusion method for piperacillin–tazobactam susceptibility testing of Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex. J. Clin. Microbiol. 58(2), e01042–19 (2020).
    • 52. Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose adjustment: facts and fables. J. Antimicrob. Chemother. 73(3), 564–568 (2018).
    • 53. Palwe S, Bakthavatchalam YD, Khobragadea K, Kharat AS, Walia K, Veeraraghavan B. In-vitro selection of ceftazidime/avibactam resistance in OXA-48-like-expressing Klebsiella pneumoniae: in-vitro and in-vivo fitness, genetic basis and activities of β-lactam plus novel β-lactamase inhibitor or β-lactam enhancer combinations. Antibiotics 10(11), 1318 (2021).
    • 54. Fröhlich C, Sørum V, Thomassen AM, Johnsen PJ, Leiros H-KS, Samuelsen Ø. OXA-48-mediated ceftazidime–avibactam resistance is associated with evolutionary trade-offs. Msphere 4(2), e00024–e00019 (2019).
    • 55. Livermore DM, Mushtaq S, Doumith M, Jamrozy D, Nichols WW, Woodford N. Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL- and AmpC-producing Enterobacteriaceae. J. Antimicrob. Chemother. 73(12), 3336–3345 (2018).
    • 56. Livermore DM, Warner M, Jamrozy D et al. In vitro selection of ceftazidime–avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob. Agents Chemother. 59(9), 5324–5330 (2015).
    • 57. Zhang P, Shi Q, Hu H et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin. Microbiol. Infect. 26(1), 124.e121–124.e124 (2020).
    • 58. Younas S, Ejaz H, Zafar A, Ejaz A, Saleem R, Javed H. AmpC β-lactamases in Klebsiella pneumoniae: an emerging threat to the paediatric patients. JPMA 68(6), 893–897 (2018).
    • 59. Shanthi M, Sekar U, Arunagiri K, Sekar B. Detection of Amp C genes encoding for β-lactamases in Escherichia coli and Klebsiella pneumoniae. Indian J. Med. Microbiol. 30(3), 290–295 (2012).
    • 60. Jean S-S, Hsueh P-R, Group SA-P. Distribution of ESBLs, AmpC β-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008-14: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J. Antimicrob. Chemother. 72(1), 166–171 (2016).
    • 61. Saad N, Munir T, Ansari M, Gilani M, Latif M, Haroon A. Evaluation of phenotypic tests for detection of Amp C β-lactamases in clinical isolates from a tertiary care hospital of Rawalpindi, Pakistan. J. Pak. Med. Assoc. 66(6), 658–661 (2016).
    • 62. Zamorano L, Miró E, Juan C et al. Mobile genetic elements related to the diffusion of plasmid-mediated AmpC β-lactamases or carbapenemases from Enterobacteriaceae: findings from a multicenter study in Spain. Antimicrob. Agents Chemother. 59(9), 5260–5266 (2015).
    • 63. Jacoby GA. AmpC β-lactamases. Clin. Microb. Rev. 22(1), 161–182 (2009).
    • 64. Perez F, Bonomo RA. Can we really use ß-lactam/ß-lactam inhibitor combinations for the treatment of infections caused by extended-spectrum ß-lactamase-producing bacteria? Clin. Infect. Dis. 54(2), 175–177 (2021).
    • 65. Ni RT, Onishi M, Mizusawa M et al. The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae. Sci. Rep. 10(1), 10876 (2020).
    • 66. Chen D, Zhao Y, Qiu Y et al. CusS-CusR two-component system mediates tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae. Front. Microbiol. 10, 3159 (2019).
    • 67. Coudeyras S, Nakusi L, Charbonnel N, Forestier C. A tripartite efflux pump involved in gastrointestinal colonization by Klebsiella pneumoniae confers a tolerance response to inorganic acid. Infect. Immun. 76(10), 4633–4641 (2008).
    • 68. Li DW, Onishi M, Kishino T et al. Properties and expression of a multidrug efflux pump AcrAB-KocC from Klebsiella pneumoniae. Biol. Pharm. Bull. 31(4), 577–582 (2008).
    • 69. Ogawa W, Onishi M, Ni R, Tsuchiya T, Kuroda T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene 498(2), 177–182 (2012).
    • 70. Ping Y, Ogawa W, Kuroda T, Tsuchiya T. Gene cloning and characterization of KdeA, a multidrug efflux pump from Klebsiella pneumoniae. Biol. Pharm. Bull. 30(10), 1962–1964 (2007).
    • 71. Sun L, Rasmussen PK, Bai Y et al. Proteomic changes of Klebsiella pneumoniae in response to colistin treatment and crrB mutation-mediated colistin resistance. Antimicrob. Agents Chemother. 64(6), e02200-19 (2020).
    • 72. Sun S, Gao H, Liu Y et al. Co-existence of a novel plasmid-mediated efflux pump with colistin resistance gene mcr in one plasmid confers transferable multidrug resistance in Klebsiella pneumoniae. Emerg. Microbes Infect. 9(1), 1102–1113 (2020).
    • 73. Veleba M, Higgins PG, Gonzalez G, Seifert H, Schneiders T. Characterization of RarA, a novel AraC family multidrug resistance regulator in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 56(8), 4450–4458 (2012).
    • 74. Ogawa W, Koterasawa M, Kuroda T, Tsuchiya T. KmrA multidrug efflux pump from Klebsiella pneumoniae. Biol. Pharm. Bull. 29(3), 550–553 (2006).
    • 75. Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 453(2), 254–267 (2014).
    • 76. Nielsen LE, Snesrud EC, Onmus-Leone F et al. IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 58(10), 6151–6156 (2014).
    • 77. Farzand R, Rajakumar K, Barer MR et al. A virulence associated siderophore importer reduces antimicrobial susceptibility of Klebsiella pneumoniae. Front. Microbiol. 12, 52 (2021).
    • 78. Wand ME, Jamshidi S, Bock LJ, Rahman KM, Sutton JM. SmvA is an important efflux pump for cationic biocides in Klebsiella pneumoniae and other Enterobacteriaceae. Sci. Rep. 9(1), 1–11 (2019).
    • 79. Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLOS ONE 9(5), e96288 (2014).
    • 80. Shahsavan S, Owlia P, Lari AR, Bakhshi B, Nobakht M. Investigation of efflux-mediated tetracycline resistance in Shigella isolates using the inhibitor and real time polymerase chain reaction method. Iran. J. Pathol. 12(1), 53 (2017).
    • 81. Du X, He F, Shi Q et al. The rapid emergence of tigecycline resistance in blaKPC-2 harboring Klebsiella pneumoniae, as mediated in vivo by mutation in tetA during tigecycline treatment. Front. Microbiol. 9, 648 (2018).
    • 82. Naha S, Sands K, Mukherjee S et al. KPC-2-producing Klebsiella pneumoniae ST147 in a neonatal unit: clonal isolates with differences in colistin susceptibility attributed to AcrAB-TolC pump. Int. J. Antimicrob. Agents 55(3), 105903 (2020). •• They properly describe a novel mechanism underlying resistance against colistin as one of the last effective antibiotics against extremely drug-resistant Klebsiella.
    • 83. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob. Agents Chemother. 57(9), 4449–4462 (2013).
    • 84. Singh SK, Mishra M, Sahoo M, Patole S, Mohapatra H. Efflux mediated colistin resistance in diverse clones of Klebsiella pneumoniae from aquatic environment. Microb. Pathog. 102, 109–112 (2017).
    • 85. Wasfi R, Elkhatib WF, Ashour HM. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci. Rep. 6(1), 38929 (2016).
    • 86. Maurya N, Jangra M, Tambat R, Nandanwar H. Alliance of efflux pumps with β-lactamases in multidrug-resistant Klebsiella pneumoniae isolates. Microb. Drug Resist. 25(8), 1155–1163 (2019). • The article describes the important role of efflux pumps in resistance against β-lactam antibiotics.
    • 87. Guérin F, Lallement C, Isnard C, Dhalluin A, Cattoir V, Giard J-C. Landscape of resistance-nodulation-cell division (RND)-type efflux pumps in Enterobacter cloacae complex. Antimicrob. Agents Chemother. 60(4), 2373–2382 (2016).
    • 88. Li XZ, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28(2), 337–418 (2015).
    • 89. Pumbwe L, Piddock LJ. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol. Lett. 206(2), 185–189 (2002).
    • 90. Rodríguez-Martínez JM, Díaz de Alba P, Briales A et al. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 68(1), 68–73 (2013).
    • 91. Zhong X, Xu H, Chen D, Zhou H, Hu X, Cheng G. First emergence of acrAB and oqxAB mediated tigecycline resistance in clinical isolates of Klebsiella pneumoniae pre-dating the use of tigecycline in a Chinese hospital. PLoS ONE 9(12), e115185 (2014).
    • 92. Szabo O, Kocsis B, Szabo N, Kristof K, Szabo D. Contribution of OqxAB efflux pump in selection of fluoroquinolone-resistant Klebsiella pneumoniae. Can. J. Infect. Dis. Med. Microbiol. 2018, 4271638 (2018).
    • 93. Türkel İ, Yıldırım T, Yazgan B, Bilgin M, Başbulut E. Relationship between antibiotic resistance, efflux pumps, and biofilm formation in extended-spectrum β-lactamase producing Klebsiella pneumoniae. J. Chemother. 30(6–8), 354–363 (2018).
    • 94. Xu Q, Jiang J, Zhu Z et al. Efflux pumps AcrAB and OqxAB contribute to nitrofurantoin resistance in an uropathogenic Klebsiella pneumoniae isolate. Int. J. Antimicrob. Agents 54(2), 223–227 (2019).
    • 95. He F, Fu Y, Chen Q et al. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLOS ONE 10(3), e0119064 (2015).
    • 96. Elgendy SG, Hameed MRA, El-Mokhtar MA. Tigecycline resistance among Klebsiella pneumoniae isolated from febrile neutropenic patients. J. Med. Microbiol. 67(7), 972 (2018).
    • 97. Nelson K, Hemarajata P, Sun D et al. Resistance to ceftazidime–avibactam is due to transposition of KPC in a porin-deficient strain ofKlebsiella pneumoniae with increased efflux activity. Antimicrob. Agents Chemother. 61(10), e00989–17 (2017).
    • 98. Yoon EJ, Oh Y, Jeong SH. Development of tigecycline resistance in carbapenemase-producing Klebsiella pneumoniae sequence type 147 via AcrAB overproduction mediated by replacement of the ramA promoter. Ann. Lab. Med. 40(1), 15–20 (2020).
    • 99. Lin Y-T, Huang Y-W, Huang H-H, Yang T-C, Wang F-D, Fung C-P. In vivo evolution of tigecycline-non-susceptible Klebsiella pneumoniae strains in patients: relationship between virulence and resistance. Int. J. Antimicrob. Agents 48(5), 485–491 (2016).
    • 100. Campos CB, Aepfelbacher M, Hentschke M. Molecular analysis of the ramRA locus in clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline. New Microbiol. 40(2), 135–138 (2017).
    • 101. Jiménez-Castellanos J-C, Wan Ahmad Kamil WNI, Cheung CHP et al. Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae. J. Antimicrob. Chemother. 71(7), 1820–1825 (2016).
    • 102. Jiménez-Castellanos J-C, Wan Nur Ismah WAK, Takebayashi Y et al. Envelope proteome changes driven by RamA overproduction in Klebsiella pneumoniae that enhance acquired β-lactam resistance. J. Antimicrob. Chemother. 73(1), 88–94 (2018).
    • 103. Zheng JX, Lin ZW, Sun X et al. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg. Microbes Infect. 7(1), 139 (2018).
    • 104. Dong N, Zeng Y, Wang Y et al. Distribution and spread of the mobilised RND efflux pump gene cluster tmexCD-toprJ in clinical Gram-negative bacteria: a molecular epidemiological study. Lancet Microbe 3(11), e846–e856 (2022).
    • 105. Cheng Y-H, Lin T-L, Lin Y-T, Wang J-T. A putative RND-type efflux pump, H239_3064, contributes to colistin resistance through CrrB in Klebsiella pneumoniae. J. Antimicrob. Chemother. 73(6), 1509–1516 (2018).
    • 106. Schaenzer AJ, Wright GD. Antibiotic resistance by enzymatic modification of antibiotic targets. Trends Mol. Med. 26(8), 768–782 (2020).
    • 107. Cirit OS, Fernandez-Martinez M, Yayla B, Martinez-Martinez L. Aminoglycoside resistance determinants in multiresistant Escherichia coli and Klebsiella pneumoniae clinical isolates from Turkish and Syrian patients. Acta Microbiol. Immunol. Hung. 66(3), 327–335 (2019).
    • 108. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist. Updat. 13(6), 151–171 (2010).
    • 109. Butler DA, Rana AP, Krapp F et al. Optimizing aminoglycoside selection for KPC-producing Klebsiella pneumoniae with the aminoglycoside-modifying enzyme (AME) gene aac(6′)-Ib. J. Antimicrob. Chemother. 76(3), 671–679 (2021).
    • 110. Sato T, Wada T, Nishijima S et al. Emergence of the novel aminoglycoside acetyltransferase variant aac (6′)-Ib-D179Y and acquisition of colistin heteroresistance in carbapenem-resistant Klebsiella pneumoniae due to a disrupting mutation in the DNA repair enzyme MutS. mBio 11(6), e01954–e01920 (2020).
    • 111. Huang Y, Sokolowski K, Rana A et al. Generating genotype-specific aminoglycoside combinations with ceftazidime/avibactam for KPC-Producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 65(9), e0069221 (2021).
    • 112. Yadav R, Bulitta JB, Schneider EK et al. Aminoglycoside concentrations required for synergy with carbapenems against Pseudomonas aeruginosa determined via mechanistic studies and modeling. Antimicrob. Agents Chemother. 61(12), (2017).
    • 113. Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms and prevalence of ST11 Carbapenem-resistant Klebsiella pneumoniae in China: a review over ten last years. J. Glob. Antimicrob. Resist. 23, 174–180 (2020).
    • 114. Ma L, Lin C-J, Chen J-H et al. Widespread dissemination of aminoglycoside resistance genes armA and rmtB in Klebsiella pneumoniae isolates in Taiwan producing CTX-M-type extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 53(1), 104–111 (2009).
    • 115. Roch M, Sierra R, Sands K et al. Vertical and horizontal dissemination of an IncC plasmid harbouring rmtB 16S rRNA methylase gene, conferring resistance to plazomicin, among invasive ST258 and ST16 KPC-producing Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 24, 183–189 (2021).
    • 116. Haldorsen BC, Simonsen GS, Sundsfjord A, Samuelsen Ø. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. in Norway is associated with the acquisition of AAC (3)-II and AAC (6′)-Ib. Diag. Microb. Infecti. Dis. 78(1), 66–69 (2014).
    • 117. Hao M, Shi X, Lv J et al. In vitro activity of apramycin against carbapenem-resistant and hypervirulent Klebsiella pneumoniae isolates. Front. Microbiol. 11, 425 (2020).
    • 118. Troyano-Hernáez P, Gutiérrez-Arroyo A, Gómez-Gil R, Mingorance J, Lázaro-Perona F. Emergence of Klebsiella pneumoniae harboring the aac (6′)-Ian amikacin resistance gene. Antimicrob. Agents Chemother. 62(12), e01952–e01918 (2018).
    • 119. Maravic G. Macrolide resistance based on the Erm-mediated rRNA methylation. Curr. Drug. Targets Infect. Disord. 4(3), 193–202 (2004).
    • 120. Guillard T, de Jong A, Limelette A et al. Characterization of quinolone resistance mechanisms in Enterobacteriaceae recovered from diseased companion animals in Europe. Vet. Microbiol. 194, 23–29 (2016).
    • 121. Azargun R, Soroush Barhaghi MH, Samadi Kafil H et al. Frequency of DNA gyrase and topoisomerase IV mutations and plasmid-mediated quinolone resistance genes among Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infections in Azerbaijan, Iran. J. Glob. Antimicrob. Resist. 17, 39–43 (2019).
    • 122. Ostrer L, Khodursky RF, Johnson JR, Hiasa H, Khodursky A. Analysis of mutational patterns in quinolone resistance-determining regions of GyrA and ParC of clinical isolates. Int. J. Antimicrob. Agents 53(3), 318–324 (2019).
    • 123. Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6(9), a025320 (2016).
    • 124. Fuzi M, Szabo D, Csercsik R. Double-serine fluoroquinolone resistance mutations advance major international clones and lineages of various multi-drug resistant bacteria. Front. Microbiol. 8, 2261 (2017).
    • 125. Tóth A, Kocsis B, Damjanova I et al. Fitness cost associated with resistance to fluoroquinolones is diverse across clones of Klebsiella pneumoniae and may select for CTX-M-15 type extended-spectrum β-lactamase. Eur. J. Clin. Microbiol. Infect. Dis. 33(5), 837–843 (2014).
    • 126. Park KS, Yang HS, Nam YS, Lee HJ. Mutations in DNA gyrase and topoisomerase IV in ciprofloxacin-nonsusceptible extended-spectrum b-Lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin. Lab. 63(3), 535–541 (2020).
    • 127. Mirzaii M, Jamshidi S, Zamanzadeh M et al. Determination of gyrA and parC mutations and prevalence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infection in Iran. J. Glob. Antimicrob. Resist. 13, 197–200 (2018).
    • 128. Surleac M, Czobor Barbu I, Paraschiv S et al. Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. PLOS ONE 15(1), e0228079 (2020).
    • 129. Ruiz E, Sáenz Y, Zarazaga M et al. qnr, aac(6′)-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J. Antimicrob. Chemother. 67(4), 886–897 (2012).
    • 130. Schulz GE. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565(2), 308–317 (2002).
    • 131. Pulzova L, Navratilova L, Comor L. Alterations in outer membrane permeability favor drug-resistant phenotype of Klebsiella pneumoniae. Microb. Drug Resist. 23(4), 413–420 (2017).
    • 132. Shin SY, Bae IK, Kim J et al. Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J. Med. Microbiol. 61(2), 239–245 (2012).
    • 133. Pilonieta MC, Erickson KD, Ernst RK, Detweiler CS. A protein important for antimicrobial peptide resistance, YdeI/OmdA, is in the periplasm and interacts with OmpD/NmpC. J. Bacteriol. 191(23), 7243–7252 (2009).
    • 134. Chen JH, Lin JC, Chang JL, Tsai YK, Siu LK. Different culture medium formulations induce variant protein expression patterns of outer membrane porins in Klebsiella pneumoniae. J. Chemother. 23(1), 9–12 (2011).
    • 135. Hamzaoui Z, Ocampo-Sosa A, Maamar E et al. An outbreak of NDM-1-producing Klebsiella pneumoniae, associated with OmpK35 and OmpK36 porin loss in Tunisia. Microb. Drug Resist. 24(8), 1137–1147 (2018).
    • 136. Chung HS, Yong D, Lee M. Mechanisms of ertapenem resistance in Enterobacteriaceae isolates in a tertiary university hospital. J. Investig. Med. 64(5), 1042–1049 (2016).
    • 137. Tian X, Wang Q, Perlaza-Jiménez L et al. First description of antimicrobial resistance in carbapenem-susceptible Klebsiella pneumoniae after imipenem treatment, driven by outer membrane remodeling. BMC Microbiol. 20(1), 218 (2020).
    • 138. Ardanuy C, Liñares J, Domínguez MA, Hernández-Allés S, Benedí VJ, Martínez-Martínez L. Outer membrane profiles of clonally related Klebsiella pneumoniae isolates from clinical samples and activities of cephalosporins and carbapenems. Antimicrob. Agents Chemother. 42(7), 1636–1640 (1998).
    • 139. García-Sureda L, Doménech-Sánchez A, Barbier M, Juan C, Gascó J, Albertí S. OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55(10), 4742–4747 (2011).
    • 140. García-Sureda L, Juan C, Doménech-Sánchez A, Albertí S. Role of Klebsiella pneumoniae LamB porin in antimicrobial resistance. Antimicrob. Agents Chemother. 55(4), 1803–1805 (2011).
    • 141. Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of bla(ACT-1) β-lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin phoe. Antimicrob. Agents Chemother. 50(10), 3396–3406 (2006).
    • 142. Srinivasan VB, Venkataramaiah M, Mondal A, Vaidyanathan V, Govil T, Rajamohan G. Functional characterization of a novel outer membrane porin KpnO, regulated by PhoBR two-component system in Klebsiella pneumoniae NTUH-K2044. PLOS ONE 7(7), e41505 (2012).
    • 143. Kádár B, Kocsis B, Tóth Á et al. Colistin resistance associated with outer membrane protein change in Klebsiella pneumoniae and Enterobacter asburiae. Acta Microbiol. Immunol. Hung. 64(2), 217–227 (2017).
    • 144. Cain AK, Boinett CJ, Barquist L et al. Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin. Sci. Rep. 8(1), 1–11 (2018).
    • 145. Cannatelli A, D'Andrea MM, Giani T et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob. Agents Chemother. 57(11), 5521–5526 (2013).
    • 146. da Silva KE, Thi Nguyen TN, Boinett CJ, Baker S, Simionatto S. Molecular and epidemiological surveillance of polymyxin-resistant Klebsiella pneumoniae strains isolated from Brazil with multiple mgrB gene mutations. Int. J. Med. Microbiol. 310(7), 151448 (2020).
    • 147. Tanfous FB, Raddaoui A, Chebbi Y, Achour W. Epidemiology and molecular characterisation of colistin-resistant Klebsiella pneumoniae isolates from immunocompromised patients in Tunisia. Int. J. Antimicrob. Agents 52(6), 861–865 (2018).