We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

In vitro susceptibility of nonfermenting Gram-negative rods to meropenem–vaborbactam and delafloxacin

    Eric Farfour

    *Author for correspondence: Tel.: +33 146 257 551;

    E-mail Address: ericf6598@yahoo.fr

    Service de Biologie Clinique, Hôpital Foch, 92150, Suresnes, France

    ,
    Louise Ruffier d'Epenoux‡

    Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 44000, Nantes, France

    CRCINA, INSERM U 1232, Université de Nantes, 44000, Nantes, France

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Anaëlle Muggeo‡

    Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, P3Cell, U 1250, 51100, Reims, France

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Corentine Alauzet

    Service de Microbiologie, CHRU de Nancy, 54500, Vandoeuvre les Nancy, France

    Laboratoire SIMPA Stress Immunité Pathogènes EA 7300, Université de Lorraine, 54500, Vandoeuvre les Nancy, France

    ,
    Lise Crémet

    Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 44000, Nantes, France

    ,
    Sophie Moussalih

    Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, P3Cell, U 1250, 51100, Reims, France

    ,
    Antoine Roux

    Service de Pneumologie Transplantation Pulmonaire, Hôpital Foch, 92150, Suresnes, France

    ,
    Sylvie C de Verdière

    Service de Pneumologie Transplantation Pulmonaire, Hôpital Foch, 92150, Suresnes, France

    ,
    Amélie Bosphore

    Service de Biologie Clinique, Hôpital Foch, 92150, Suresnes, France

    ,
    Stéphane Corvec§

    Service de Bactériologie et des Contrôles Microbiologiques, CHU de Nantes, 44000, Nantes, France

    CRCINA, INSERM U 1232, Université de Nantes, 44000, Nantes, France

    §Authors contributed equally

    Search for more papers by this author

    ,
    Thomas Guillard§

    Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière-Parasitologie-Mycologie, P3Cell, U 1250, 51100, Reims, France

    §Authors contributed equally

    Search for more papers by this author

    &
    Marc Vasse§

    Service de Biologie Clinique, Hôpital Foch, 92150, Suresnes, France

    §Authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.2217/fmb-2021-0278

    Aim: Meropenem–vaborbactam and delafloxacin activities were not assessed against Achromobacter spp. (Achr), Burkholderia cepacia complex (Bcc) and Stenotrophomonas maltophilia (Smal). Methodology: A total of 106 Achr, 57 Bcc and 100 Smal were tested with gradient diffusion test of meropenem–vaborbactam, delafloxacin and comparators. Results: Meropenem–vaborbactam MIC50 were 4 μg/ml for Achr, 1 μg/ml for B. cepacia, 2 μg/ml for B. cenocepacia and B. multivorans, and 32 μg/ml for Smal. Delafloxacin MIC50 were 4 μg/ml for Achr, 0.25 μg/ml for B. cepacia and B. multivorans, 2 μg/ml for B. cenocepacia, and 0.5 μg/m for Smal. meropenem–vaborbactam MICs were fourfold lower than meropenem for 28.3% Achr, 77.2% B. cepacia, 53.8% B. cenocepacia and 77.2% B. multivorans. Conclusion: Meropenem–vaborbactam and delafloxacin are in vitro active against Bcc and Achr.

    Plain language summary

    We assess the efficacy of two new antibiotics, meropenem–vaborbactam and delafloxacin, to kill rarely encountered bacteria. These bacteria, Achromobacter, Burkholderia and Stenotrophomonas maltophilia, mainly cause respiratory tract infections. Both antibiotics are found active against Achromobacter and Burkholderia, but not S. maltophilia.

    Tweetable abstract

    Meropenem–vaborbactam (Vaborem®) and delafloxacin (Quofenix®) are active against most strains of Achromobacter and Burkholderia cepacia complex, but against not S. maltophilia

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Rutter WC, Burgess DR, Burgess DS. Increasing incidence of multidrug resistance among cystic fibrosis respiratory bacterial isolates. Microb. Drug Resist. 23(1), 51–55 (2017).
    • 2. Vasiljevic ZV, Novovic K, Kojic M et al. Burkholderia cepacia complex in serbian patients with cystic fibrosis: prevalence and molecular epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 35(8), 1277–1284 (2016).
    • 3. Farfour E, Trochu E, Devin C et al. Trends in ceftazidime–avibactam activity against multidrug-resistant organisms recovered from respiratory samples of cystic fibrosis patients. Transpl. Infect. Dis. 20(5), e12955 (2018). • The manuscript describes ceftazidime–avibactam in vitro activity against Burkholderia, Achromobacter and Stenotrophomonas.
    • 4. Massip C, Mathieu C, Gaudru C et al. In vitro activity of seven β-lactams including ceftolozane/tazobactam and ceftazidime/avibactam against Burkholderia cepacia complex, Burkholderia gladioli and other non-fermentative Gram-negative bacilli isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 74(2), 525–528 (2019).
    • 5. Bonacorsi S, Fitoussi F, Lhopital S et al. Comparative in vitro activities of meropenem, imipenem, temocillin, piperacillin, and ceftazidime in combination with tobramycin, rifampin, or ciprofloxacin against Burkholderia cepacia isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 43(2), 213–217 (1999).
    • 6. Lomovskaya O, Sun D, Rubio-Aparicio D et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 61(11), 17–32 (2017).
    • 7. Tsivkovski R, Lomovskayaa O. Biochemical activity of vaborbactam. Antimicrob. Agents Chemother. 64(2), 19–27 (2020).
    • 8. Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G et al. Effect and safety of meropenem–vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect. Dis. Ther. 7(4), 439–455 (2018).
    • 9. Romanelli F, Stolfa S, Morea A et al. Meropenem–vaborbactam activity in vitro: a new option for Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae treatment. Future Microbiol. 16(16), 1261–1266 (2021).
    • 10. Bassetti M, Pecori D, Cojutti P et al. Clinical and pharmacokinetic drug evaluation of delafloxacin for the treatment of acute bacterial skin and skin structure infections. Expert Opin. Drug Metab. Toxicol. 13(11), 1193–1200 (2017).
    • 11. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters version 11.0 (2021). https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf
    • 12. Clinical and laboratory Standard Institute (2020). https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf
    • 13. Pogue JM, Bonomo RA, Kaye KS. Ceftazidime/avibactam, meropenem–vaborbactam, or both? Clinical and formulary considerations. Clin. Infect. Dis. 68(3), 519–524 (2019).
    • 14. Caverly LJ, Spilker T, Kalikin LM et al. In vitro activities of β-lactam-β-lactamase inhibitor antimicrobial agents against cystic fibrosis respiratory pathogens. Antimicrob. Agents Chemother. 64(1), 19–22 (2020). • The manuscript describes the in vitro activity of 15 drugs against Burkholderia, Achromobacter and Stenotrophomonas.
    • 15. Moriceau C, Eveillard M, Lemarié C, Chenouard R, Pailhoriès H, Kempf M. Stenotrophomonas maltophilia susceptibility to ceftazidime–avibactam combination versus ceftazidime alone. Med. Mal. Infect. 50(3), 305–307 (2020).
    • 16. Biagi M, Tan X, Wu T et al. Activity of potential alternative treatment agents for Stenotrophomonas maltophilia isolates nonsusceptible to levofloxacin and/or trimethoprim–sulfamethoxazole. J. Clin. Microbiol. 58(2), 9–18 (2020).
    • 17. Ruppé É, Woerther P-L, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care 5(1), 61 (2015).
    • 18. Rhodes KA, Schweizer HP. Antibiotic resistance in Burkholderia species. Drug Resist. Updat. 28, 82–90 (2016).
    • 19. Abbott IJ, Peleg AY. Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies. Semin. Respir. Crit. Care Med. 36(1), 99–110 (2015).
    • 20. European Committee on Antimicrobial Susceptibility Testing. Stenotrophomonas maltophilia (2012). https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/S_maltophilia_EUCAST_guidance_note_20120201.pdf
    • 21. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial susceptibility testing of Burkholderia cepacia complex (BCC) (2013). https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/BCC_susceptibility_testing_130719.pdf
    • 22. Wootton M, Davies L, Pitman K, Howe RA. Evaluation of susceptibility testing methods for Burkholderia cepacia complex: a comparison of broth microdilution, agar dilution, gradient strip and EUCAST disc diffusion. Clin. Microbiol. Infect. 27(5), 788.e1–788.e4 (2021). • The manuscript highlights difficulties of performing antimicrobial susceptibility testing of Burkholderia.
    • 23. Sfeir MM. Antimicrobial susceptibility testing for glucose-nonfermenting Gram-negative bacteria: the tip of the iceberg. Antimicrob. Agents Chemother. 64(4), 1–2 (2020).