We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Preliminary Communication

Characterization of carbapenem-resistant Escherichia coli and Klebsiella: a role for AmpC-producing isolates

    Kobra S Rizi

    Department of Microbiology & Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    ,
    Ehsan Aryan

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    ,
    Masoud Youssefi

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    ,
    Kiarash Ghazvini

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    ,
    Zahra Meshkat

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    ,
    Yousef Amini

    Infectious Disease & Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran

    ,
    Hadi Safdari

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    ,
    Mohammad Derakhshan

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    &
    Hadi Farsiani

    *Author for correspondence: Tel.: +98 513 802 2205;

    E-mail Address: farsianih@mums.ac.ir

    Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    Published Online:https://doi.org/10.2217/fmb-2021-0211

    Aim: This study aimed to investigate the role of AmpC enzymes in carbapenem resistance among AmpC/extended-spectrum β-lactamase (ESBL)-producing clinical isolates of Escherichia coli and Klebsiella spp. Methods: Fifty-six bacterial strains that were AmpC producers were examined. The antibiotic susceptibility test was performed by the disk diffusion and E-test. The prevalence of the plasmid carbapenemase was determined using PCR. Results: The resistance to meropenem in the AmpC+/ESBL+ group was 64%, higher than that reported for the AmpC/ESBL+ group. Ten isolates of the carbapenem-resistant AmpC producers were negative for carbapenemase-encoding genes. Conclusion: Carbapenem resistance among AmpC-producing isolates with negative results for carbapenemase-encoding genes potentially demonstrates the role of AmpC enzymes among these isolates.

    References

    • 1. Ye Q, Wu Q, Zhang S et al. Antibiotic-resistant extended spectrum β-lactamase-and plasmid-mediated ampC-producing Enterobacteriaceae isolated from retail food products and the pearl river in Guangzhou, China. Front. Microbiol. 8(3), 96 (2017).
    • 2. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55(11), 4943–4960 (2011).
    • 3. Alizadeh N, Rezaee MA, Kafil HS et al. Evaluation of resistance mechanisms in carbapenem-resistant Enterobacteriaceae. Infect. Drug Resist. 13, 1377 (2020).
    • 4. Majewski P, Wieczorek P, Ojdana D et al. Altered outer membrane transcriptome balance with AmpC overexpression in carbapenem-resistant Enterobacter cloacae. Front. Microbiol. 7, 2054 (2016).
    • 5. Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med. Sci. 6(1), 1 (2018).
    • 6. Sahuquillo-Arce JM, Hernández-Cabezas A, Yarad-Auad F, Ibáñez-Martínez E, Falomir-Salcedo P, Ruiz-Gaitán A. Carbapenemases: a worldwide threat to antimicrobial therapy. World J. Pharmacol. 4(1), 75–95 (2015).
    • 7. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20(3), 440–458 (2007).
    • 8. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40(6), 2153–2162 (2002).
    • 9. Meini S, Tascini C, Cei M, Sozio E, Rossolini GM. AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection 47(3), 363–375 (2019).
    • 10. Goessens WH, Van Der Bij AK, Van Boxtel R et al. Antibiotic trapping by plasmid-encoded CMY-2 β-lactamase combined with reduced outer membrane permeability as a mechanism of carbapenem resistance in Escherichia coli. Antimicrob. Agents Chemother. 57(8), 3941–3949 (2013).
    • 11. Van Boxtel R, Wattel AA, Arenas J, Goessens WH, Tommassen J. Acquisition of carbapenem resistance by plasmid-encoded-AmpC-expressing Escherichia coli. Antimicrob. Agents Chemother. 61(1), e01413-16 (2017).
    • 12. Lee C-S, Doi Y. Therapy of infections due to carbapenem-resistant gram-negative pathogens. Infect. Chemother. 46(3), 149 (2014).
    • 13. Li G-L, Duo L-B, Luan Y et al. Identification of genotypes of plasmid-encoded AmpC β-lactamases from clinical isolates and characterization of mutations in their promoter and attenuator regions. Gene Expr. 15(5–6), 215–223 (2013).
    • 14. Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ, Antibacterial Resistance Leadership Group. A primer on AmpC β-lactamases: necessary knowledge for an increasingly multidrug-resistant world. Clin. Infect. Dis. 69(8), 1446–1455 (2019).
    • 15. Rizi KS, Mosavat A, Youssefi M et al. High prevalence of blaCMY AmpC beta-lactamase in ESBL co-producing Escherichia coli and Klebsiella spp. clinical isolates in the northeast of Iran. J. Glob. Antimicrob. Resist. 22, 477–482 (2020).
    • 16. Kahlmeter G, Giske CG, Kirn TJ, Sharp SE. Point–Counterpoint: differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute recommendations for reporting antimicrobial susceptibility results. J. Clin. Microbiol. 57(9), e01129–19 (2019).
    • 17. Abbey TC, Deak E. What’s new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clin. Microbiol. Newsl. 41(23), 203–209 (2019).
    • 18. Junior JCR, Tamanini R, Soares BF et al. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk. Semina Cienc. Agrar. 37(5), 3069–3078 (2016).
    • 19. Samuel M, Lu M, Pachuk CJ, Satishchandran C. A spectrophotometric method to quantify linear DNA. Anal. Biochem. 313(2), 301–306 (2003).
    • 20. Ibrahimagić A, Bedenić B, Kamberović F, Uzunović S. High prevalence of CTX-M-15 and first report of CTX-M-3, CTX-M-22, CTX-M-28 and plasmid-mediated AmpC beta-lactamase producing Enterobacteriaceae causing urinary tract infections in Bosnia and Herzegovina in hospital and community settings. J. Infect. Chemother. 21(5), 363–369 (2015).
    • 21. Gokmen TG, Nagiyev T, Meral M, Onlen C, Heydari F, Koksal F. NDM-1 and rmtC-producing Klebsiella pneumoniae isolates in Turkey. Jundishapur J. Microbiol. 9(10), e33990 (2016).
    • 22. Magoué CL, Melin P, Gangoué-Piéboji J, Assoumou M-CO, Boreux R, De Mol P. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Ngaoundere, Cameroon. Clin. Microbiol. Infect. 19(9), E416–E420 (2013).
    • 23. Shen Y, Xiao WQ, Gong JM, Pan J, Xu QX. Detection of New Delhi metallo-beta-lactamase (encoded by blaNDM-1) in Enterobacter aerogenes in China. J. Clin. Lab. Anal. 31(2), e22044 (2017).
    • 24. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 70(1), 119–123 (2011).
    • 25. Pitout JD, Gregson DB, Poirel L, Mcclure J-A, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J. Clin. Microbiol. 43(7), 3129–3135 (2005).
    • 26. EUCAST. http://www.eucast.org/clinical_breakpoints/
    • 27. Gharavi MJ, Zarei J, Roshani-Asl P, Yazdanyar Z, Sharif M, Rashidi N. Comprehensive study of antimicrobial susceptibility pattern and extended spectrum beta-lactamase (ESBL) prevalence in bacteria isolated from urine samples. Sci. Rep. 11(1), 578 (2021).
    • 28. Dalmolin TV, Bianchini BV, Rossi GG et al. Detection and analysis of different interactions between resistance mechanisms and carbapenems in clinical isolates of Klebsiella pneumoniae. Braz. J. Microbiol. 48(3), 493–498 (2017).
    • 29. Marsik FJ, Nambiar S. Review of carbapenemases and AmpC-beta lactamases. J. Pediatr. Infect. Dis. 30(12), 1094–1095 (2011).
    • 30. Woodford N, Dallow JW, Hill RL et al. Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int. J. Antimicrob. Agents 29(4), 456–459 (2007).
    • 31. Balasubramanian D, Schneper L, Merighi M et al. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes. PLOS ONE 7(3), e34067 (2012).
    • 32. Nakano R, Nakano A, Yano H, Okamoto R. Role of AmpR in the high expression of the plasmid-encoded AmpC β-lactamase CFE-1. Msphere 2(4), e00192–00117 (2017).
    • 33. Lindquist S, Lindberg F, Normark S. Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene. J. Bacteriol. 171(7), 3746–3753 (1989).
    • 34. Lindberg F, Lindquist S, Normark S. Genetic basis of induction and overproduction of chromosomal class I β-lactamase in nonfastidious Gram-negative bacilli. Clin. Infect. Dis. 10(4), 782–785 (1988).
    • 35. Honore N, Nicolas MH, Cole ST. Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. EMBO J. 5(13), 3709–3714 (1986).
    • 36. Eskandari-Nasab E, Moghadampour M, Tahmasebi A. Prevalence of blaCTX-M gene among extended-spectrum β-lactamases producing Klebsiella pneumoniae clinical isolates in Iran: a meta-analysis. Iran. J. Med. Sci. 43(4), 347 (2018).
    • 37. Ghaderi RS, Yaghoubi A, Amirfakhrian R, Hashemy SI, Ghazvini K. The prevalence of genes encoding ESBL among clinical isolates of Escherichia coli in Iran: a systematic review and meta-analysis. Gene Rep. 18, 100562 (2020).
    • 38. Ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed. Res. Int. 2018, 9519718 (2018).
    • 39. Kpoda DS, Ajayi A, Somda M et al. Distribution of resistance genes encoding ESBLs in Enterobacteriaceae isolated from biological samples in health centers in Ouagadougou, Burkina Faso. BMC Res. Notes 11(1), 471 (2018).
    • 40. Peirano G, Hung King Sang J, Pitondo-Silva A, Laupland KB, Pitout JD. Molecular epidemiology of extended-spectrum-β-lactamase-producing Klebsiella pneumoniae over a 10 year period in Calgary, Canada. J. Antimicrob. Chemother. 67(5), 1114–1120 (2012).
    • 41. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front. Microbiol. 3, 110 (2012).
    • 42. Woerther P-L, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin. Microbiol. Rev. 26(4), 744–758 (2013).
    • 43. Sepp E, Andreson R, Balode A et al. Phenotypic and molecular epidemiology of ESBL-, AmpC-, and carbapenemase-producing Escherichia coli in Northern and Eastern Europe. Front. Microbiol. 10, 2465 (2019).
    • 44. Yusuf I, Arzai A, Haruna M, Sharif A, Getso M. Detection of multi drug resistant bacteria in major hospitals in Kano, North-West, Nigeria. Braz. J. Microbiol. 45(3), 791–798 (2014).
    • 45. Klein EY, Tseng KK, Pant S, Laxminarayan R. Tracking global trends in the effectiveness of antibiotic therapy using the Drug Resistance Index. BMJ Glob. Health 4, e001315 (2019).
    • 46. Gajdács M, Ábrók M, Lázár A et al. Detection of VIM, NDM and OXA-48 producing carbapenem resistant Enterobacterales among clinical isolates in southern Hungary. Acta Microbiol. Immunol. 67(4), 209–215 (2020).
    • 47. Bedos J, Daikos G, Dodgson A et al. Early identification and optimal management of carbapenem-resistant Gram-negative infection. J. Hosp. Infect. 108, 158–167 (2021).
    • 48. Kuzmenkov AY, Trushin IV, Vinogradova AG et al. AMRmap: an interactive web platform for analysis of antimicrobial resistance surveillance data in Russia. Front. Microbiol. 12(12), 377 (2021).
    • 49. Gajamer VR, Bhattacharjee A, Paul D et al. High prevalence of carbapenemase, AmpC β-lactamase and aminoglycoside resistance genes in extended-spectrum β-lactamase-positive uropathogens from Northern India. J. Glob. Antimicrob. Resist. 20, 197–203 (2020).
    • 50. García-Fernández A, Miriagou V, Papagiannitsis CC et al. An ertapenem-resistant extended-spectrum-β-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob. Agents Chemother. 54(10), 4178–4184 (2010).
    • 51. Tsai Y-K, Fung C-P, Lin J-C et al. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 55(4), 1485–1493 (2011).
    • 52. Livermore DM, Woodford N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 14(9), 413–420 (2006).
    • 53. Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KS. Prevalence of newer β-lactamases in Gram-negative clinical isolates collected in the United States from 2001 to 2002. J. Clin. Microbiol. 44(9), 3318–3324 (2006).
    • 54. Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J. Clin. Microbiol. 48(4), 1019–1025 (2010).
    • 55. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother. 41(3), 563–569 (1997).
    • 56. Qin X, Yang Y, Hu F, Zhu D. Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital. J. Med. Microbiol. 63(2), 222–228 (2014).