We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Zeolite 4A as a jammer of bacterial communication in Chromobacterium violaceum and Pseudomonas aeruginosa

    Seyhan Ulusoy

    *Author for correspondence: Tel.: +90 246 211 4068;

    E-mail Address: seyhanulusoy@sdu.edu.tr

    Department of Biology, Suleyman Demirel University, Isparta, 32260, Turkey

    ,
    Ramadan B Akalin

    The Vocational School of Health Services, Namık Kemal University, Tekirdağ, 59030, Turkey

    ,
    Halime Çevikbaş

    Department of Biology, Suleyman Demirel University, Isparta, 32260, Turkey

    ,
    Avni Berisha

    Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, Prishtina, 10000, Kosovo

    Materials Science-Nanochemistry Research Group, NanoAlb-Unit of Albanian Nanoscienceand Nanotechnology, Tirana, 1000, Albania

    ,
    Ayhan Oral

    Department of Chemistry, Onsekiz Mart University, Çanakkale, 18100, Turkey

    &
    Gülgün Boşgelmez-Tinaz

    Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey

    Published Online:https://doi.org/10.2217/fmb-2021-0174

    Aim: To investigate the hypothesis that zeolites interfere with quorum-sensing (QS) systems of Chromobacterium violaceum and Pseudomonas aeruginosa by adsorbing N-acyl homoserine lactone (AHL) signal molecules. Methods: QS inhibition by zeolite 4A was investigated using an AHL-based bioreporter assay. The adsorption of the AHLs was evaluated by performing inductively coupled plasma–optical emission spectroscopy and confirmed by Monte Carlo and molecular dynamic simulations. Results: Zeolite 4A reduced the violacein production in C. violaceum by over 90% and the biofilm formation, elastase and pyocyanin production in P. aeruginosa by 87, 68 and 98%, respectively. Conclusion: Zeolite 4A disrupts the QS systems of C. violaceum and P. aeruginosa by means of adsorbing 3-oxo-C6-AHL and 3-oxo-C12-AHL signaling molecules and can be developed as a novel QS jammer to combat P. aeruginosa-related infections.

    References

    • 1. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2(11), a012427 (2012).
    • 2. Schauder S, Bassler BL. The languages of bacteria. Genes Devel. 15(12), 1468–1480 (2001).
    • 3. De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67(4), 1865–1873 (2001).
    • 4. Ikeno T, Fukuda K, Ogawa M, Honda M, Tanabe T, Taniguchi H. Small and rough colony Pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients. Microbiol. Immunol. 51(10), 929–938 (2007).
    • 5. Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4(4), 551 (1998).
    • 6. Pearson JP, Gray KM, Passador L et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl Acad. Sci. USA 91(1), 197–201 (1994).
    • 7. Pearson JP, Passador L, Iglewski BH, Greenberg E. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92(5), 1490–1494 (1995).
    • 8. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol. Rev. 35(2), 247–274 (2011).
    • 9. Costerton J, Stewart PS, Greenberg E. Bacterial biofilms: a common cause of persistent infections. Science 284(5418), 1318–1322 (1999).
    • 10. Bjarnsholt T, Jensen PØ, Rasmussen TB et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151(12), 3873–3880 (2005).
    • 11. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68(8), 3919–3924 (2002).
    • 12. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl. Environ. Microbiol. 74(5), 1357–1366 (2008).
    • 13. Bjarnsholt T, Van Gennip M, Jakobsen TH, Christensen LD, Jensen PO, Givskov M. In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect. Nat. Protoc. 5(2), 282–293 (2010).
    • 14. Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M et al. Endemic Malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Microbiology 159(Pt 5), 924–938 (2013).
    • 15. Majik MS, Gawas UB, Mandrekar VK. Next generation quorum sensing inhibitors: accounts on structure activity relationship studies and biological activities. Bioorg. Med. Chem. 28(21), 115728 (2020).
    • 16. Beus M, Savijoki K, Patel JZ, Yli-Kauhaluoma J, Fallarero A, Zorc B. Chloroquine fumardiamides as novel quorum sensing inhibitors. Bioorg. Med. Chem. Lett. 30(16), 127336 (2020).
    • 17. Bosgelmez-Tinaz G, Ulusoy S, Ugur A, Ceylan O. Inhibition of quorum sensing-regulated behaviors by Scorzonera sandrasica. Curr. Microbiol. 55(2), 114–118 (2007).
    • 18. Eris R, Ulusoy S. Rose, clove, chamomile essential oils and pine turpentine inhibit quorum sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. J. Essent. Oil Bearing Plants 16(2), 126–135 (2013).
    • 19. Miandji A, Ulusoy S, Dündar Y et al. Synthesis and biological activities of some 1,3-benzoxazol-2 (3H)-one derivatives as anti-quorum sensing agents. Arzneimittel-Forschung 62(7), 330–334 (2012).
    • 20. Ulusoy S, Senkardes S, Coskun I et al. Quorum sensing inhibitor activities of celecoxib derivatives in Pseudomonas aeruginosa. Lett. Drug Des. Discov. 14(5), 613–618 (2017).
    • 21. Jiang K, Yan X, Yu J et al. Design, synthesis, and biological evaluation of 3-amino-2-oxazolidinone derivatives as potent quorum-sensing inhibitors of Pseudomonas aeruginosa PAO1. Eur. J. Med. Chem. 194, 112252 (2020).
    • 22. Hançer Aydemir D, Cifci G, Aviyente V, Boşgelmez-Tinaz G. Quorum-sensing inhibitor potential of trans-anethole aganist Pseudomonas aeruginosa. J. Appl. Microbiol. 125(3), 731–739 (2018).
    • 23. Petrus R, Warchoł J. Ion exchange equilibria between clinoptilolite and aqueous solutions of Na+/Cu 2+, Na+/Cd 2+ and Na+/Pb 2+. Micropor. Mesopor. Mater. 61(1), 137–146 (2003).
    • 24. Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156(1), 11–24 (2010).
    • 25. Morris RE. Microporous materials in antibacterial applications. In: Antimicrobial Coatings and Modifications on Medical Devices. Springer Nature, Cham, Switzerland, 171–188 (2017).
    • 26. Servatan M, Zarrintaj P, Mahmodi G et al. Zeolites in drug delivery: progress, challenges and opportunities. Drug Discov. Today 25(4), 642–656 (2020).
    • 27. Choo J, Rukayadi Y, Hwang JK. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol. 42(6), 637–641 (2006).
    • 28. McClean KH, Winson MK, Fish L et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12), 3703–3711 (1997).
    • 29. Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T. N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol. Lett. 279(1), 124–130 (2008).
    • 30. Im H, Choi SY, Son S, Mitchell RJ. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci. Rep. 7(1), 1–10 (2017).
    • 31. O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28(3), 449–461 (1998).
    • 32. Li H, Li X, Wang Z et al. Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner. BMC Microbiol. 15(1), 1–8 (2015).
    • 33. Essar D, Eberly L, Hadero A, Crawford I. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 172(2), 884–900 (1990).
    • 34. Ohman D, Cryz S, Iglewski B. Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J. Bacteriol. 142(3), 836–842 (1980).
    • 35. Hsissou R, Benhiba F, Abbout S et al. Trifunctional epoxy polymer as corrosion inhibition material for carbon steel in 1.0 M HCl: MD simulations, DFT and complexation computations. Inorg. Chem. Commun. 115, 107858 (2020).
    • 36. Hsissou R, Abbout S, Seghiri R et al. Evaluation of corrosion inhibition performance of phosphorus polymer for carbon steel in [1 M] HCl: computational studies (DFT, MC and MD simulations). J. Mater. Res. Technol. 9(3), 2691–2703 (2020).
    • 37. Hsissou R, Dagdag O, Abbout S et al. Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods. J. Mol. Liq. 284, 182–192 (2019).
    • 38. Dagdag O, Hsissou R, El Harfi A et al. Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies. Surf. Interfaces 18, 100454 (2020).
    • 39. Dagdag O, Berisha A, Safi Z et al. DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium: computational and experimental studies. J. Appl. Polym. Sci. 137(8), 48402 (2020).
    • 40. Sun H, Jin Z, Yang C et al. COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22(2), 47 (2016).
    • 41. Abbout S, Zouarhi M, Chebabe D, Damej M, Berisha A, Hajjaji N. Galactomannan as a new bio-sourced corrosion inhibitor for iron in acidic media. Heliyon 6(3), e03574 (2020).
    • 42. Dagdag O, Berisha A, Safi Z et al. Highly durable macromolecular epoxy resin as anticorrosive coating material for carbon steel in 3% NaCl: computational supported experimental studies. J. Appl. Polym. Sci. 137(34), 49003 (2020).
    • 43. Berisha A. The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne-a MD study. Open Chemistry 17(1), 703–710 (2019).
    • 44. Hsissou R, Benzidia B, Rehioui M et al. Anticorrosive property of hexafunctional epoxy polymer HGTMDAE for E24 carbon steel corrosion in 1.0 M HCl: gravimetric, electrochemical, surface morphology and molecular dynamic simulations. Polym. Bull. 77, 3577–3601 (2019).
    • 45. Guo L, Zhang S, Li W, Hu G, Li X. Experimental and computational studies of two antibacterial drugs as corrosion inhibitors for mild steel in acid media. Mater. Corros. 65(9), 935–942 (2014).
    • 46. Dagdag O, Hsissou R, Berisha A et al. Polymeric-based epoxy cured with a polyaminoamide as an anticorrosive coating for aluminum 2024-T3 surface: experimental studies supported by computational modeling. J. Bio- Tribo-Corros. 5(3), 58 (2019).
    • 47. Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol. Adv. 31(2), 224–245 (2013).
    • 48. Kim HS, Lee SH, Byun Y, Park HD. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci. Rep. 5, 8656 (2015).
    • 49. Imperi F, Tiburzi F, Fimia GM, Visca P. Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa. Environ. Microbiol. 12(6), 1630–1642 (2010).
    • 50. Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR. Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol. 20(9), 449–458 (2012).
    • 51. Khan MSA, Zahin M, Hasan S, Husain FM, Ahmad I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett. Appl. Microbiol. 49(3), 354–360 (2009).
    • 52. Yu L, Gong J, Zeng C, Zhang L. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Mater. Sci. Eng. C 33(7), 3652–3660 (2013).
    • 53. Ames L Jr. The cation sieve properties of clinoptilolite. Am. Mineral. 45(5–6), 689–700 (1960).
    • 54. Ackley MW, Yang RT. Diffusion in ion-exchanged clinoptilolites. AIChE J. 37(11), 1645–1656 (1991).
    • 55. Jiang N, Yuan S, Wang J, Jiao H, Qin Z, Li YW. A theoretical study of amines adsorption in HMOR by using ONIOM2 method. J. Mol. Catal. A Chem. 220(2), 221–228 (2004).
    • 56. Wingenfelder U, Nowack B, Furrer G, Schulin R. Adsorption of Pb and Cd by amine-modified zeolite. Water Res. 39(14), 3287–3297 (2005).
    • 57. Derouane EG, Chang CD. Confinement effects in the adsorption of simple bases by zeolites. Micropor. Mesopor. Mater. 35, 425–433 (2000).
    • 58. Guo X, Yun H, Zhang M et al. Adsorption of low-molecular-weight amines in aqueous solutions to zeolites: an approach to impeding low-molecular-weight amines from regenerating N-nitrosamines. Ind. Eng. Chem. Res. 56(42), 12024–12031 (2017).
    • 59. Hentzer M, Wu H, Andersen JB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22(15), 3803–3815 (2003).
    • 60. Jakobsen TH, Bragason SK, Phipps RK et al. Food as a source for QS inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 78(7), 2410–2421 (2012).
    • 61. Naik SP, Scholin J, Ching S, Chi F, Herpfer M. Quorum sensing disruption in Vibrio harveyi bacteria by clay materials. J. Agric. Food Chem. 66(1), 40–44 (2018).
    • 62. Fruijtier-Pölloth C. The safety of synthetic zeolites used in detergents. Arch. Toxicol. 83(1), 23–35 (2009).
    • 63. Für Risikobewertung B. Introduction to the problems surrounding garment textiles. Report no.: BfR Information no. 018/2007. German Federal Institute for Risk Assessment (BfR), Berlin (DE) (2007).