We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Preliminary Communication

Effect of polymicrobial interactions on antimicrobial resistance: an in vitro analysis in human ocular infections

    Sanchita Mitra

    *Author for correspondence: Tel.: +91 406 810 2522;

    E-mail Address: sanchita034@gmail.com

    Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India

    ,
    Aparajita Mallick

    Ocular Microbiology Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India

    &
    Shilpa Priyadarshini

    Ocular Microbiology Services, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India

    Published Online:https://doi.org/10.2217/fmb-2021-0114

    Purpose: Investigate the effect of polymicrobial interactions on antimicrobial resistance (AMR) of ocular pathogens in polymicrobial settings, compared with monomicrobial infections. Methods: Polymicrobial interactions were labeled as antagonistic, synergistic or indifferent based on a reduction, an increase or no change, respectively, in antibiotics' MIC by the Vitek 2 compact system, compared with monomicrobial pathogens. Results:Staphylococcus epidermidis showed antagonistic polymicrobial interactions (22.6%); Pseudomonas aeruginosa showed synergistic interactions (62.5%); multidrug-resistant Acinetobacter baumannii showed increased susceptibility to select antibiotics; Serratia ficaria (inherently colistin resistant) became colistin-susceptible in polymicrobial combinations. Conclusion: Both antagonistic and synergistic interactions exist among human pathogens in polymicrobial settings. Gram-positive pathogens had significantly higher antagonistic polymicrobial interactions (increased MICs: 20.4%) compared with Gram-negative ones (synergistic: 59.4%).

    References

    • 1. Peters BM, Jabra-Rizk MA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin. Microbiol. Rev. 25(1), 193–213 (2012).
    • 2. Cummings LA, Hoogestraat DR, Rassoulian-Barrett SL et al. Comprehensive evaluation of complex polymicrobial specimens using next-generation sequencing and standard microbiological culture. Sci. Rep. 10, 5446 (2020).
    • 3. Murray JL, Connell JL, Stacy A, Turner KH, Whiteley M. Mechanisms of synergy in polymicrobial infections. J. Microbiol. 52(3), 188–199 (2014).
    • 4. Bustinduy AL, Sutherland LJ, Chang-Cojulun A et al. Age-stratified profiles of serum IL-6, IL-10, and TNF-α cytokines among Kenyan children with Schistosoma haematobium, Plasmodium falciparum, and other chronic parasitic co-infections. Am. J. Trop. Med. Hyg. 92(5), 945–951 (2015).
    • 5. Shen SS, Qu XY, Zhang WZ et al. Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect. Dis. Poverty 8, 49 (2019).
    • 6. Foster KR, Bell T. Competition, not co-operation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).
    • 7. Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation. Environ. Microbiol. 18, 766–779 (2016).
    • 8. Tshikantwa TS, Ullah MW, He F, Yang G. Current trends and potential applications of microbial interactions in human welfare. Front. Microbiol. 9(1156), 1–19 (2018).
    • 9. Todd OA, Peters BM. Candida albicans and Staphylococcus aureus pathogenicity and polymicrobial interactions: lessons beyond Koch's postulates. J. Fungi (Basel) 5(3), 81 (2019).
    • 10. Lozupone CA. Getting to know the microbiome. Nat. Microbiol. 1, 16030 (2016).
    • 11. Giesecke MT, Schwabe P, Wichlas F et al. Impact of high prevalence of pseudomonas and polymicrobial Gram-negative infections in major sub-/total traumatic amputations on empiric antimicrobial therapy: a retrospective study. World J. Emerg. Surg. 9, 55 (2014).
    • 12. Ogba OM, Nsan E, Eyam ES. Aerobic bacteria associated with diabetic foot ulcers and their susceptibility pattern. Biomed. Dermatol. 3, 1 (2019).
    • 13. Jindal A, Moreker MR, Pathengay A et al. Polymicrobial endophthalmitis: prevalence, causative organisms, and visual outcomes. J. Ophthalmic Inflamm. Infect. 3(1), 6 (2013).
    • 14. Jones DB. Polymicrobial keratitis. Trans. Am. Ophthalmol. Soc. 79, 153–167 (1981).
    • 15. Zhou Y, Holland MJ, Makalo P et al. The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Med. 6(11), 99 (2014).
    • 16. Tuft S. Polymicrobial infection and the eye. Br. J. Ophthalmol. 90(3), 257–258 (2006).
    • 17. Melo GB, Bispo PJ, Yu MC, Pignatari AC, Höfling-Lima AL. Microbial profile and antibiotic susceptibility of culture-positive bacterial endophthalmitis. Eye (Lond.) 25(3), 382–387 (2011).
    • 18. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br. J. Ophthalmol. 87(7), 834–838 (2003).
    • 19. Reed JM, O'Callaghan RJ, Girgis DO, McCormick CC, Caballero AR, Marquart ME. Ocular virulence of capsule-deficient Streptococcus pneumoniae in a rabbit keratitis model. Invest. Ophthalmol. Vis. Sci. 46(2), 604–608 (2005).
    • 20. Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M. Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol. 17(1), 212 (2017).
    • 21. Parment PA. The role of Serratia marcescens in soft contact lens associated ocular infections. A review. Acta. Ophthalmol. Scand. 75(1), 67–71 (1997).
    • 22. Bharathi MJ, Ramakrishnan R, Shivakumar C, Meenakshi R, Lionalraj D. Etiology and antibacterial susceptibility pattern of community-acquired bacterial ocular infections in a tertiary eye care hospital in south India. Indian J. Ophthalmol. 58(6), 497–507 (2010).
    • 23. Leck AK, Thomas PA, Hagan M et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br. J. Ophthalmol. 86(11), 1211–1215 (2002).
    • 24. Michelsen CF, Christensen AM, Bojer MS, Høiby N, Ingmer H, Jelsbak L. Staphylococcus aureus alters growth activity, autolysis, and antibiotic tolerance in a human host-adapted Pseudomonas aeruginosa lineage. J. Bacteriol. 196(22), 3903–3911 (2014).
    • 25. Capriotti JA, Pelletier JS, Shah M, Caivano DM, Turay P, Ritterband DC. The etiology of infectious corneal ulceration in Sierra Leone. Int. Ophthalmol. 30(6), 637–640 (2010).
    • 26. Lupo A, Haenni M, Madec JY. Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol. Spectr. 6(3), 1–16 (2018).
    • 27. Eliopoulos GM, Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance and treatment options. Clin. Infect. Dis. 46(8), 1254–1263 (2008).
    • 28. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25(6), 1340 (2020).