We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Effect of antimicrobials on Stenotrophomonas maltophilia biofilm

    Bárbara Ellen Santos Carvalhais

    Department of Pathology, Health Sciences Center, Federal University of Espírito Santo (UFES), Av. Marechal Campos, Vitória, Espírito Santo 1468 29040 090, Brazil

    ,
    Cristiana de Souza e Silva

    Department of Pathology, Health Sciences Center, Federal University of Espírito Santo (UFES), Av. Marechal Campos, Vitória, Espírito Santo 1468 29040 090, Brazil

    &
    Kênia Valéria dos Santos

    *Author for correspondence: Tel.: +55 279 9227 0908;

    E-mail Address: kenia.santos@ufes.br

    Department of Pathology, Health Sciences Center, Federal University of Espírito Santo (UFES), Av. Marechal Campos, Vitória, Espírito Santo 1468 29040 090, Brazil

    Published Online:https://doi.org/10.2217/fmb-2020-0115

    Aim: To evaluate the activity of five antimicrobials against young and mature Stenotrophomonas maltophilia biofilms. Materials & methods: Nineteen clinical strains from hemoculture of hemodialysis patients were tested for biofilm kinetics, MIC and minimum biofilm inhibitory concentration (MBIC) in young and mature biofilms. Results: All strains were moderate biofilm producers. MIC showed total susceptibility to levofloxacin and trimethoprim-sulfamethoxazole and partial resistance to ceftazidime (63.2%) and gentamicin (21%). Young and mature biofilms showed the lowest MBIC/MIC ratio for gentamicin, chloramphenicol and levofloxacin, respectively. The highest MBIC/MIC was for trimethoprim-sulfamethoxazole (young) and ceftazidime (mature). Conclusion: Gentamicin displayed surprising activity against S. maltophilia biofilms. Chloramphenicol was indicated as a good option against young S. maltophilia biofilms, and trimethoprim-sulfamethoxazole showed limited antibiofilm activity.

    Graphical abstract

    References

    • 1. Ryan RP, Monchy S, Cardinale M et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7(7), 514–525 (2009).
    • 2. Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25(1), 2–41 (2012).
    • 3. Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front. Microbiol. 8(2 Suppl. 4), 627–631 (2017).
    • 4. Lai C-H, Chi C-Y, Chen H-P et al. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J. Microbiol. Immunol. Infect. 37(6), 350–358 (2004).
    • 5. Alat I, Kılıç AT, Çelik E. Replacement of the native mitral valve due to endocarditis caused by Stenotrophomonas maltophilia. Brazilian J. Cardiovasc. Surg. 34(5), 615–617 (2019).
    • 6. Golestaneh L, Mokrzycki MH. Prevention of hemodialysis catheter infections: ointments, dressings, locks, and catheter hub devices. Hemodial. Int. 22(S2), S75–S82 (2018).
    • 7. Roehr AC, Frey OR, Koeberer A, Fuchs T, Roberts JA, Brinkmann A. Anti-infective drugs during continuous hemodialysis – using the bench to learn what to do at the bedside. Int. J. Artif. Organs 38(1), 17–22 (2015).
    • 8. Thet MK, Pelobello MLF, Das M et al. Outbreak of nonfermentative Gram-negative bacteria (Ralstonia pickettii and Stenotrophomonas maltophilia) in a hemodialysis center. Hemodial. Int. 23(3), E83–E89 (2019).
    • 9. Pompilio A, Crocetta V, De Nicola S, Verginelli F, Fiscarelli E, Di Bonaventura G. Cooperative pathogenicity in cystic fibrosis: Stenotrophomonas maltophilia modulates Pseudomonas aeruginosa virulence in mixed biofilm. Front. Microbiol. 6, 951 (2015).
    • 10. Díez-Aguilar M, Ekkelenkamp M, Morosini M-I et al. Antimicrobial susceptibility of non-fermenting Gram-negative pathogens isolated from cystic fibrosis patients. Int. J. Antimicrob. Agents. 53(1), 84–88 (2018).
    • 11. Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin. Microbiol. Rev. 23(2), 299–323 (2010).
    • 12. Pompilio A, Pomponio S, Crocetta V et al. Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC Microbiol. 11, 159 (2011).
    • 13. Alcaraz E, Garcia C, Papalia M, Vay C, Friedman L, Passerini de Rossi B. Stenotrophomonas maltophilia isolated from patients exposed to invasive devices in a university hospital in Argentina: molecular typing, susceptibility and detection of potential virulence factors. J. Med. Microbiol. 67(7), 992–1002 (2018).
    • 14. Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev. Anti Infect. Ther. 17(11), 877–893 (2019).
    • 15. Flemming H-C, Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 8(9), 623–633 (2010).
    • 16. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 358(9276), 135–138 (2001).
    • 17. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004).
    • 18. Lewis K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322, 107–131 (2008).
    • 19. Miyaue S, Suzuki E, Komiyama Y, Kondo Y, Morikawa M, Maeda S. Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony–biofilm culture. Front. Microbiol. 9(JUN), 1396 (2018).
    • 20. Soi V, Moore CL, Kumbar L, Yee J. Prevention of catheter-related bloodstream infections in patients on hemodialysis: challenges and management strategies. Int. J. Nephrol. Renovasc. Dis. 9, 95–103 (2016).
    • 21. Eschenauer GA, Lam SW, Mueller BA. Dose timing of aminoglycosides in hemodialysis patients: a pharmacology view. Semin. Dial. 29(3), 204–213 (2016).
    • 22. Pinner NA, Canada RB, Broyles JE, Hudson JQ. Evaluation of vancomycin and gentamicin dialysis clearance using in vivo and in vitro systems. Ren. Fail. 34(6), 703–707 (2012).
    • 23. Vitória da MP, Alvarenga de S CG, Vasconcellos Filho LM et al. Low serum trough concentrations and high vancomycin minimum inhibitory concentration in methicillin-sensitive Staphylococcus aureus From hemodialysis patients in Brazil. Ther. Drug Monit. 41(1), 38–43 (2019).
    • 24. CLSI. Performance Standards for Antimicrobial Susceptibility Testing - CLSI supplement M100 (29th Edition). Clinical and Laboratory Standards Institute, PA, USA (2019).
    • 25. Matson HH, Jones BM, Wagner JL, Motes MA, Bland CM. Growing resistance in Stenotrophomonas maltophilia? Am. J. Heal. Pharm. 76(24), 2004–2005 (2019).
    • 26. Pompilio A, Savini V, Fiscarelli E, Gherardi G, Di Bonaventura G. Clonal diversity, biofilm formation, and antimicrobial resistance among Stenotrophomonas maltophilia strains from cystic fibrosis and non-cystic fibrosis patients. Antibiotics 9(1), 15 (2020).
    • 27. Whitby PW, Carter KB, Burns JL, Royall JA, LiPuma JJ, Stull TL. Identification and detection of Stenotrophomonas maltophilia by rRNA-directed PCR. J. Clin. Microbiol. 38(12), 4305–4309 (2000).
    • 28. Versalovic J, Koeuth T, Lupski R. Distribution of repetitive DNA sequences in eubacteria and application to finerpriting of bacterial enomes. Nucleic Acids Res. 19(24), 6823–6831 (1991).
    • 29. Heras J, Domínguez C, Mata E et al. GelJ – a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16(1), 270 (2015).
    • 30. Stepanović S, Vuković D, Hola V et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115(8), 891–899 (2007).
    • 31. Wang A, Wang Q, Kudinha T, Xiao S, Zhuo C. Effects of fluoroquinolones and azithromycin on biofilm formation of Stenotrophomonas maltophilia. Sci. Rep. 6(1), 1–11 (2016).
    • 32. Di Bonaventura G, Stepanović S, Picciani C, Pompilio A, Piccolomini R. Effect of environmental factors on biofilm formation by clinical Stenotrophomonas maltophilia isolates. Folia Microbiol. (Praha). 52(1), 86–90 (2007).
    • 33. Pompilio A, Crocetta V, Confalone P et al. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol. 10, 102 (2010).
    • 34. Kaur P, Gautam V, Tewari R. Distribution of Class 1 integrons, sul1 and sul2 genes among clinical isolates of Stenotrophomonas maltophilia from a Tertiary Care Hospital in North India. Microb. Drug Resist. 21(4), 380–385 (2015).
    • 35. Juhász E, Krizsán G, Lengyel G, Grósz G, Pongrácz J, Kristóf K. Infection and colonization by Stenotrophomonas maltophilia: antimicrobial susceptibility and clinical background of strains isolated at a tertiary care centre in Hungary. Ann. Clin. Microbiol. Antimicrob. 13(1), 333 (2014).
    • 36. Caylan R, Kaklikkaya N, Aydin K et al. An epidemiological analysis of Stenotrophomonas maltophilia strains in a university hospital. Jpn J. Infect. Dis. 57(2), 37–40 (2004).
    • 37. Pompilio A, Crocetta V, Scocchi M et al. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiol. 12, 145 (2012).
    • 38. Wu K, Yau YCW, Matukas L, Waters V. Biofilm compared to conventional antimicrobial susceptibility of Stenotrophomonas maltophilia Isolates from cystic fibrosis patients. Antimicrob. Agents Chemother. 57(3), 1546–1548 (2013).
    • 39. Sun E, Liang G, Wang L et al. Antimicrobial susceptibility of hospital acquired Stenotrophomonas maltophilia isolate biofilms. Brazilian J. Infect. Dis. 20(4), 365–373 (2016).
    • 40. Esposito A, Vollaro A, Esposito EP et al. Antibacterial and antivirulence activity of glucocorticoid PYED-1 against Stenotrophomonas maltophilia. Antibiotics 9(3), 105 (2020).
    • 41. Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6(6), (2016). doi:10.1101/cshperspect.a027029
    • 42. O'Shea S, Duffull S, Johnson DW. Aminoglycosides in hemodialysis patients: is the current practice of post dialysis dosing appropriate? Semin. Dial. 22(3), 225–230 (2009).
    • 43. Nicodemo AC, Araujo MRE, Ruiz AS, Gales AC. In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J. Antimicrob. Chemother. 53(4), 604–608 (2004).
    • 44. Savini V, Catavitello C, D'Aloisio M et al. Chloramphenicol and rifampin may be the only options against Stenotrophomonas maltophilia. A tale of a colonized bladder device in a patient with myelofibrosis. Infez. Med. 18(3), 193–197 (2010).
    • 45. Hu L-F, Xu X-H, Li H-R et al. Surveillance of antimicrobial susceptibility patterns among Stenotrophomonas maltophilia isolated in China during the 10-year period of 2005–2014. J. Chemother. 30(1), 25–30 (2018).
    • 46. Gallo SW, Figueiredo TP, Bessa MC, Pagnussatti VE, Ferreira CAS, Oliveira SD. Isolation and characterization of Stenotrophomonas maltophilia isolates from a Brazilian Hospital. Microb. Drug Resist. 22(8), 688–695 (2016).
    • 47. Nys C, Cherabuddi K, Venugopalan V, Klinker KP. Clinical and microbiologic outcomes in patients with monomicrobial Stenotrophomonas maltophilia infections. Antimicrob. Agents Chemother. 63(11), e00788–19 (2019).
    • 48. Grillon A, Schramm F, Kleinberg M, Jehl F. Comparative activity of ciprofloxacin, levofloxacin and moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia assessed by minimum inhibitory concentrations and time-kill studies. PLoS ONE 11(6), e0156690 (2016).
    • 49. Tan R, Liu J, Li M, Huang J, Sun J, Qu H. Epidemiology and antimicrobial resistance among commonly encountered bacteria associated with infections and colonization in intensive care units in a university-affiliated hospital in Shanghai. J. Microbiol. Immunol. Infect. 47(2), 87–94 (2014).
    • 50. Chung HS, Hong SG, Kim YR et al. Antimicrobial susceptibility of Stenotrophomonas maltophilia isolates from Korea, and the activity of antimicrobial combinations against the isolates. J. Korean Med. Sci. 28(1), 62–66 (2013).
    • 51. Yang Q, Wang H, Chen M et al. Surveillance of antimicrobial susceptibility of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in China: the 2002–2009 study for monitoring antimicrobial resistance trends (SMART). Int. J. Antimicrob. Agents. 36(6), 507–512 (2010).
    • 52. Pompilio A, Catavitello C, Picciani C et al. Subinhibitory concentrations of moxifloxacin decrease adhesion and biofilm formation of Stenotrophomonas maltophilia from cystic fibrosis. J. Med. Microbiol. 59(Pt 1), 76–81 (2010).
    • 53. Passerini de Rossi B, García C, Calenda M, Vay C, Franco M. Activity of levofloxacin and ciprofloxacin on biofilms and planktonic cells of Stenotrophomonas maltophilia isolates from patients with device-associated infections. Int. J. Antimicrob. Agents. 34(3), 260–264 (2009).
    • 54. Gales AC, Jones RN, Forward KR, Liñares J, Sader HS, Verhoef J. Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY antimicrobial surveillance program (1997–1999). Clin. Infect. Dis. 32(s2), S104–S113 (2001).
    • 55. Kanderi T, Shrimanker I, Mansoora Q, Shah K, Yumen A, Komanduri S. Stenotrophomonas maltophilia: an emerging pathogen of the respiratory tract. Am. J. Case Rep. 21, e921466–1 (2020).
    • 56. Cruz-Córdova A, Mancilla-Rojano J, Luna-Pineda VM et al. Molecular epidemiology, antibiotic resistance, and virulence traits of Stenotrophomonas maltophilia strains associated with an outbreak in a Mexican Tertiary Care Hospital. Front. Cell. Infect. Microbiol. 10 (2020).
    • 57. Di Bonaventura G, Spedicato I, D'Antonio D, Robuffo I, Piccolomini R. Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob. Agents Chemother. 48(1), 151–160 (2004).
    • 58. Biočanin M, Madi H, Vasiljević Z, Kojić M, Jovčić B, Lozo J. Temperature, pH and trimethoprim-sulfamethoxazole are potent inhibitors of biofilm formation by Stenotrophomonas maltophilia clinical isolates. Polish J. Microbiol. 66(4), 433–438 (2017).
    • 59. Chang Y-T, Lin C-Y, Chen Y-H, Hsueh P-R. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front. Microbiol. 6, 893 (2015).
    • 60. Furner-Pardoe J, Anonye BO, Cain R et al. Anti-biofilm efficacy of a medieval treatment for bacterial infection requires the combination of multiple ingredients. Sci. Rep. 10(1), 12687 (2020).
    • 61. Kačániová M, Galovičová L, Ivanišová E et al. Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods 9(3), 282 (2020).