We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Comparative genomics of Sporothrix species and identification of putative pathogenic-gene determinants

    Hariprasath Prakash

    Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India

    ,
    Ponmurugan Karuppiah

    Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

    ,
    Naif A Al-Dhabi

    Department of Botany & Microbiology, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

    ,
    Gandham S Prasad

    Technology, Industrial Liaison & Entrepreneurship Unit, University of Hyderabad, Hyderabad 500046, Telangana, India

    ,
    Chandan Badapanda

    Bioinformatics Division, Xcelris Labs Limited, Ahmedabad 380015, Gujarat, India

    ,
    Arunaloke Chakrabarti

    Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India

    &
    Shivaprakash M Rudramurthy

    *Author for correspondence: Tel.: +91 172 275 5162;

    E-mail Address: mrshivprakash@yahoo.com

    Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India

    Published Online:https://doi.org/10.2217/fmb-2019-0302

    Aim: To understand the phylogenomics, pathogenic/virulence-associated genes and genomic evolution of pathogenic Sporothrix species. Materials & methods: We performed in silico comparative genome analysis of Sporothrix species using ab initio tools and in-house scripts. We predicted genes and repeats, compared genomes based on synteny, identified orthologous clusters, assessed genes family expansion/contraction, predicted secretory proteins and finally searched for similar sequences from various databases. Results: The phylogenomics revealed that Sporothrix species are closely related to Ophiostoma species. The gene family evolutionary analysis revealed the expansion of genes related to virulence (CFEM domain, iron acquisition genes, lysin motif domain), stress response (Su[var]3-9, Enhancer-of-zeste and Trithorax domain and Domain of unknown function 1996), proteases (aspartic protease, x-pro dipeptidyl-peptidase), cell wall composition associated genes (chitin deacetylase, chitinase) and transporters (major facilitator superfamily transporter, oligo-peptide transporter family) in Sporothrix species. Conclusion: The present study documents the putative pathogenic/virulence-associated genes in the Sporothrix species.

    References

    • 1. Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S. Global epidemiology of sporotrichosis. Med. Mycol. 53(1), 3–14 (2015).
    • 2. Zhou X, Rodrigues AM, Feng P, de Hoog GS. Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers. 66(1), 153–165 (2013).
    • 3. Dias NM, Oliveira MME, Portela MA, Santos C, Zancope-Oliveira RM, Lima N. Sporotrichosis caused by Sporothrix mexicana, Portugal. Emerg. Infect. Dis. 17(10), 1975–1976 (2011).
    • 4. de Beer ZW, Duong TA, Wingfield MJ. The divorce of Sporothrix and Ophiostoma: solution to a problematic relationship. Stud. Mycol. 83, 165–191 (2016).
    • 5. Thomson J, Trott DJ, Malik R et al. An atypical cause of sporotrichosis in a cat. Med. Mycol. Case Rep. 23(November 2018), 72–76 (2019).
    • 6. Nesseler A, Schauerte N, Geiger C et al. Sporothrix humicola (Ascomycota: Ophiostomatales) – A soil-borne fungus with pathogenic potential in the eastern quoll (Dasyurus viverrinus). Med. Mycol. Case Rep. 25(June), 39–44 (2019).
    • 7. Valeriano CAT, de Lima-Neto RG, Inácio CP et al. Is Sporothrix chilensis circulating outside Chile? PLoS Negl. Trop. Dis. 14(3), e0008151 (2020).
    • 8. Makri N, Paterson GK, Gregge F, Urquhart C, Nuttall T. First case report of cutaneous sporotrichosis (Sporothrix species) in a cat in the UK. J. Feline Med. Surg. Open Rep. 6(1), 1–5 (2020).
    • 9. Morrison AS, Lockhart SR, Bromley JG, Kim JY, Burd EM. An environmental Sporothrix as a cause of corneal ulcer. Med. Mycol. Case Rep. 2(1), 88–90 (2013).
    • 10. Etchecopaz AN, Lanza N, Toscanini MA et al. Sporotrichosis caused by Sporothrix brasiliensis in Argentina: case report, molecular identification and in vitro susceptibility pattern to antifungal drugs. J. Mycol. Med. 30(1), 100908 (2019).
    • 11. Rossato L, Moreno LF, Jamalian A et al. Proteins potentially involved in immune evasion strategies in Sporothrix brasiliensis elucidated by ultra-high-resolution mass spectrometry. mSphere 3(3), 1–10 (2018).
    • 12. Sil A andrianopoulos A. Thermally dimorphic human fungal pathogens—polyphyletic pathogens with a convergent pathogenicity trait. Cold Spring Harb. Perspect. Med. 5(8), a019794 (2015).
    • 13. Muñoz JF, McEwen JG, Clay OK, Cuomo CA. Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic fungi. Sci. Rep. 8(1), 4473 (2018).
    • 14. Teixeira MM, de Almeida LGP, Kubitschek-Barreira P et al. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics 15(1), 943 (2014).
    • 15. Huang L, Gao W, Giosa D et al. Whole-genome sequencing and in silico analysis of two strains of Sporothrix globosa. Genome Biol. Evol. 8(11), 3292–3296 (2016).
    • 16. D'Alessandro E, Giosa D, Huang L et al. Draft genome sequence of the dimorphic fungus Sporothrix pallida, a nonpathogenic species belonging to sporothrix, a genus containing agents of human and feline sporotrichosis. Genome Announc. 4(2), 1–2 (2016).
    • 17. New D, Beukers AG, Kidd SE et al. Identification of multiple species and subpopulations among Australian clinical Sporothrix isolates using whole genome sequencing. Med. Mycol. 57(7), 905–908 (2019).
    • 18. Gomez OM, Alvarez LC, Muñoz JF et al. Draft genome sequences of two Sporothrix schenckii clinical isolates associated with human sporotrichosis in colombia. Genome Announc. 6(24), 1–2 (2018).
    • 19. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19), 3210–3212 (2015).
    • 20. Waterhouse RM, Seppey M, Simão FA et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35(3), 543–548 (2018).
    • 21. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25(Chapter 4, Unit 4.10), 4.10.1–4.10.14 (2009).
    • 22. Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32(Web Server issue), W309–312 (2004).
    • 23. Borodovsky M, Lomsadze A. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Curr. Protoc. Bioinformatics 35(Chapter 4(1), Unit 4.6.1-10), 4.6.1–4.6.10 (2011).
    • 24. Korf I. Gene finding in novel genomes. BMC Bioinformatics. 5, 59 (2004).
    • 25. Haas BJ, Salzberg SL, Zhu W et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9(1), R7 (2008).
    • 26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–1760 (2009).
    • 27. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31(12), 2032–2034 (2015).
    • 28. Lindenbaum P, Redon R. bioalcidae, samjs and vcffilterjs: object-oriented formatters and filters for bioinformatics files. Bioinformatics 34(7), 1224–1225 (2018).
    • 29. Nawrocki EP, Burge SW, Bateman A et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43(D1), D130–D137 (2015).
    • 30. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22), 2933–2935 (2013).
    • 31. Altschul S. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997).
    • 32. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002).
    • 33. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972–1973 (2009).
    • 34. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17(4), 540–552 (2000).
    • 35. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).
    • 36. Huelsenbeck JP, Ronquist F. MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754–755 (2001).
    • 37. Zhang H, Gao S, Lercher MJ, Hu S, Chen W-H. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 40(W1), W569–W572 (2012).
    • 38. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14(1), e1005944 (2018).
    • 39. Krzywinski M, Schein J, Birol I et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19(9), 1639–1645 (2009).
    • 40. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13(9), 2178–2189 (2003).
    • 41. Finn RD, Coggill P, Eberhardt RY et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1), D279–D285 (2016).
    • 42. De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22(10), 1269–1271 (2006).
    • 43. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010).
    • 44. Winnenburg R. PHI-base: a new database for pathogen host interactions. Nucleic Acids Res. 34(90001), D459–D464 (2006).
    • 45. Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The pathogen-host interactions database (PHI-base): additions and future developments. Nucleic Acids Res. 43(D1), D645–D655 (2015).
    • 46. Chaudhuri R, Ansari FA, Raghunandanan MV, Ramachandran S. FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 12(1), 192 (2011).
    • 47. Boutet E, Lieberherr D, Tognolli M et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biology. springer, 1374, 23–54 (2016).
    • 48. Rawlings ND, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res. 27(1), 325–331 (1999).
    • 49. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 44(D1), D343–D350 (2016).
    • 50. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41(12), (2013).
    • 51. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 12(1), 59–60 (2014).
    • 52. Busk PK, Pilgaard B, Lezyk MJ, Meyer AS, Lange L. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function. BMC Bioinformatics 18(1), 1–9 (2017).
    • 53. Zhang H, Yohe T, Huang L et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46(W1), W95–W101 (2018).
    • 54. Prakash H, Rudramurthy SM, Gandham PS et al. Apophysomyces variabilis: draft genome sequence and comparison of predictive virulence determinants with other medically important Mucorales. BMC Genomics 18(1), 736 (2017).
    • 55. Pellegrin C, Morin E, Martin FM, Veneault-Fourrey C. Comparative Analysis of Secretomes from Ectomycorrhizal Fungi with an Emphasis on Small-Secreted Proteins. Front. Microbiol. 6(NOV), 1–15 (2015).
    • 56. Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 44(D1), D372–D379 (2016).
    • 57. Kosman DJ. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 47(5), 1185–1197 (2003).
    • 58. Kulkarni RD, Kelkar HS, Dean RA. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem. Sci. 28(3), 118–121 (2003).
    • 59. Zhang Z-N, Wu Q-Y, Zhang G-Z et al. Systematic analyses reveal uniqueness and origin of the CFEM domain in fungi. Sci. Rep. 5(1), 13032 (2015).
    • 60. Kombrink A, Thomma BPHJ. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog. 9(12), e1003769 (2013).
    • 61. de Jonge R, Thomma BPHJ. Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol. 17(4), 151–157 (2009).
    • 62. Ma L-J, Ibrahim AS, Skory C et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 5(7), e1000549 (2009).
    • 63. Whiston E, Taylor JW. Comparative phylogenomics of pathogenic and nonpathogenic species. G3; Genes|Genomes|Genetics 6(2), 235–244 (2016).
    • 64. Boyce KJ andrianopoulos A. Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev. 39(6), 797–811 (2015).
    • 65. Zhang Z, Hou B, Wu YZ, Wang Y, Liu X, Han S. Two-component histidine kinase DRK1 is required for pathogenesis in Sporothrix schenckii. Mol. Med. Rep. 17(1), 721–728 (2018).
    • 66. Youseff BH, Holbrook ED, Smolnycki KA, Rappleye CA. Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog. 8(5), e1002713 (2012).
    • 67. Cleare LG, Zamith-Miranda D, Nosanchuk JD. Heat shock proteins in Histoplasma and Paracoccidioides. Clin. Vaccine Immunol. 24(11), 1–8 (2017).
    • 68. Tong S-M, Chen Y, Ying S-H, Feng M-G. Three DUF1996 proteins localize in vacuoles and function in fungal responses to multiple stresses and metal ions. Sci. Rep. 6(1), 20566 (2016).
    • 69. Freitag M. Histone methylation by SET domain proteins in fungi. Annu. Rev. Microbiol. 71(1), 413–439 (2017).
    • 70. Tran K, Green EM. SET domains and stress: uncovering new functions for yeast Set4. Curr. Genet. 65(3), 643–648 (2019).
    • 71. Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environ. Microbiol. 17(11), 4615–4630 (2015).
    • 72. Gu Q, Ji T, Sun X et al. Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides. FEMS Microbiol. Lett. 364(19), 1–8 (2017).
    • 73. Adhvaryu KK, Morris SA, Strahl BD, Selker EU. Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot. Cell. 4(8), 1455–1464 (2005).
    • 74. Ibrahim AS, Gebremariam T, Lin L et al. The high affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis. Mol. Microbiol. 77(3), 587–604 (2010).
    • 75. Navarro-Mendoza MI, Pérez-Arques C, Murcia L et al. Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Sci. Rep. 8(1), 7660 (2018).
    • 76. Bairwa G, Hee Jung W, Kronstad JW. Iron acquisition in fungal pathogens of humans. Metallomics 9(3), 215–227 (2017).
    • 77. Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect. Immun. 70(9), 5246–5255 (2002).
    • 78. Nevitt T, Thiele DJ. Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog. 7(3), e1001322 (2011).
    • 79. Newman SL, Smulian AG. Iron uptake and virulence in Histoplasma capsulatum. Curr. Opin. Microbiol. 16(6), 700–707 (2013).
    • 80. de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell. 12(4), 470–481 (2013).
    • 81. Gozalbo D, Gil-Navarro I, Azorín I, Renau-Piqueras J, Martínez JP, Gil ML. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect. Immun. 66(5), 2052–2059 (1998).
    • 82. Barbosa MS, Bao SN, Andreotti PF et al. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect. Immun. 74(1), 382–389 (2006).
    • 83. Marcos CM, Fátima da Silva J, Oliveira HC, Moraes da Silva RA, Mendes-Giannini MJS, Fusco-Almeida AM. Surface-expressed enolase contributes to the adhesion of Paracoccidioides brasiliensis to host cells. FEMS Yeast Res. 12(5), 557–570 (2012).
    • 84. Pérez A, Pedrós B, Murgui A, Casanova M, López-Ribot JL, Martínez JP. Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res. 6(7), 1074–1084 (2006).
    • 85. Srivastava VK, Suneetha KJ, Kaur R. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata. Biochem. J. 463(1), 103–114 (2014).
    • 86. Zhu W, Wei W, Wu Y et al. BcCFEM1, a CFEM domain-containing protein with putative GPI-anchored site, is involved in pathogenicity, conidial production and stress tolerance in Botrytis cinerea. Front. Microbiol. 8(SEP), 1–11 (2017).
    • 87. Bailão EFLC, Parente JA, Pigosso LL et al. Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated. PLoS Negl. Trop. Dis. 8(5), e2856 (2014).
    • 88. DuBois JC, Pasula R, Dade JE, Smulian AG. Yeast transcriptome and in vivo hypoxia detection reveals Histoplasma capsulatum response to low oxygen tension. Med. Mycol. 54(1), myv073 (2015).
    • 89. Akcapinar GB, Kappel L, Sezerman OU, Seidl-Seiboth V. Molecular diversity of LysM carbohydrate-binding motifs in fungi. Curr. Genet. 61(2), 103–113 (2015).
    • 90. Cen K, Li B, Lu Y, Zhang S, Wang C. Divergent LysM effectors contribute to the virulence of Beauveria bassiana by evasion of insect immune defenses. PLoS Pathog. 13(9), e1006604 (2017).
    • 91. Muraosa Y, Toyotome T, Yahiro M, Kamei K. Characterisation of novel-cell-wall LysM-domain proteins LdpA and LdpB from the human pathogenic fungus Aspergillus fumigatus. Sci. Rep. 9(1), 3345 (2019).
    • 92. Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67(3), 400–28 table of contents (2003).
    • 93. Monod M. Secreted proteases from dermatophytes. Mycopathologia 166(5–6), 285–294 (2008).
    • 94. Muszewska A, Stepniewska-Dziubinska MM, Steczkiewicz K, Pawlowska J, Dziedzic A, Ginalski K. Fungal lifestyle reflected in serine protease repertoire. Sci. Rep. 7(1), 9147 (2017).
    • 95. Li J, Yu L, Tian Y, Zhang K-Q. Molecular evolution of the deuterolysin (M35) family genes in Coccidioides. PLoS ONE 7(2), e31536 (2012).
    • 96. Park M, Do E, Jung WH. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41(2), 67–72 (2013).
    • 97. Park Y-J, Jeong Y-U, Kong W-S. Genome sequencing and carbohydrate-active enzyme (CAZyme) repertoire of the white rot fungus Flammulina elastica. Int. J. Mol. Sci. 19(8), 2379 (2018).
    • 98. Gow NAR, Latge J-P, Munro CA. The fungal cell wall: structure, biosynthesis and function. Microbiol. Spectr. 5(3), 3341–3354 (2017).
    • 99. Snarr B, Qureshi S, Sheppard D. Immune recognition of fungal polysaccharides. J. Fungi. 3(3), 47 (2017).
    • 100. Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum -(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc. Natl Acad. Sci. USA 104(4), 1366–1370 (2007).
    • 101. Rappleye CA, Engle JT, Goldman WE. RNA interference in Histoplasma capsulatum demonstrates a role for α-(1,3)-glucan in virulence. Mol. Microbiol. 53(1), 153–165 (2004).
    • 102. Teixeira MM, Moreno LF, Stielow BJ et al. Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud. Mycol. 86, 1–28 (2017).
    • 103. Perlin MH andrews J, Toh SS. Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity. Adv. Genet. 85, 201–253 (2014).
    • 104. Chagué V, Maor R, Sharon A. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC Microbiol. 9(1), 173 (2009).
    • 105. Menke J, Dong Y, Kistler HC. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Mol. Plant Microbe Interact. 25(11), 1408–1418 (2012).