We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Protein–protein interactions of HPV–Chlamydia trachomatis–human and their potential in cervical cancer

    Abdul Arif Khan

    *Author for correspondence:

    E-mail Address: abdularifkhan@gmail.com

    Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh, 11451, Saudi Arabia

    ,
    Abdulwahab A Abuderman

    Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia

    ,
    Mohd Tashfeen Ashraf

    School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, 201312, India

    &
    Zakir Khan

    Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Baverly Blvd., Los Angeles, CA 90048, USA

    Published Online:https://doi.org/10.2217/fmb-2019-0242

    Aim: HPV is an important cause of cervical cancer, but Chlamydia trachomatis (CT) is suspiciously involved in this disease ranging from direct to its involvement as a cofactor with HPV. We performed this study to understand the interaction of HPV and C. trachomatis with humans and its contribution to cervical cancer. Materials & methods: Host–pathogen and pathogen–pathogen protein–protein interaction maps of HPV/CT/human were prepared and compared to analyze interactions during single/coinfection of C. trachomatis and HPV. The interacting human proteins were detected by their involvement in cervical cancer. Results:C. trachomatis may interact with several cancer associated proteins while HPV and C. trachomatis largely interact with different human proteins, suggesting different pathogenesis. Conclusion:C. trachomatis coinfection with HPV may modulate cervical cancer development.

    References

    • 1. Vos T, Flaxman AD, Naghavi M et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2163–2196 (2012).
    • 2. Paavonen J. Chlamydia trachomatis and cancer. Sex. Transm. Infect. 77(3), 154–156 (2001).
    • 3. Anttila T, Saikku P, Koskela P et al. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 285(1), 47–51 (2001).
    • 4. WHO. Human papillomavirus (HPV) and cervical cancer. http://www.who.int/mediacentre/factsheets/fs380/en/
    • 5. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J. Clin. 67(1), 7–30 (2017).
    • 6. Silva J, Cerqueira F, Medeiros R. Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch. Gynecol. Obstet. 289(4), 715–723 (2014).
    • 7. Seraceni S, De Seta F, Colli C et al. High prevalence of HPV multiple genotypes in women with persistent Chlamydia trachomatis infection. Infect. Agent Cancer 9, 30 (2014).
    • 8. Madeleine MM, Anttila T, Schwartz SM et al. Risk of cervical cancer associated with Chlamydia trachomatis antibodies by histology, HPV type and HPV cofactors. Int. J. Cancer 120(3), 650–655 (2007).
    • 9. Smith JS, Bosetti C, Munoz N et al. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int. J. Cancer 111(3), 431–439 (2004).
    • 10. Contini C, Seraceni S, Carradori S, Cultrera R, Perri P, Lanza F. Identification of Chlamydia trachomatis in a patient with ocular lymphoma. Am. J. Hematol. 84(9), 597–599 (2009).
    • 11. Naucler P, Chen HC, Persson K et al. Seroprevalence of human papillomaviruses and Chlamydia trachomatis and cervical cancer risk: nested case-control study. J. Gen. Virol. 88(Pt 3), 814–822 (2007).
    • 12. Tungsrithong N, Kasinpila C, Maneenin C et al. Lack of significant effects of Chlamydia trachomatis infection on cervical cancer risk in a nested case-control study in north-east Thailand. Asian Pac. J. Cancer Prev. 15(3), 1497–1500 (2014).
    • 13. Bhatla N, Puri K, Joseph E, Kriplani A, Iyer VK, Sreenivas V. Association of Chlamydia trachomatis infection with human papillomavirus (HPV) and cervical intraepithelial neoplasia – a pilot study. Indian J. Med. Res. 137(3), 533–539 (2013).
    • 14. Schweppe DK, Harding C, Chavez JD et al. Host–microbe protein interactions during bacterial infection. Chem. Biol. 22(11), 1521–1530 (2015).
    • 15. Pais SV, Key CE, Borges V et al. CteG is a Chlamydia trachomatis effector protein that associates with the Golgi complex of infected host cells. Sci. Rep. 9(1), 6133 (2019).
    • 16. Olive AJ, Haff MG, Emanuele MJ et al. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. Cell Host Microb. 15(1), 113–124 (2014).
    • 17. Harris SR, Clarke IN, Seth-Smith HM et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat. Genet. 44(4), 413–419 S411 (2012).
    • 18. Josefson D. Chlamydia increases risk of cervical cancer. BMJ 322(7278), 71 (2001).
    • 19. Consortium TU. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42, D191–D198 (2014).
    • 20. Garcia-Garcia J, Schleker S, Klein-Seetharaman J, Oliva B. BIPS: BIANA interolog prediction server. A tool for protein–protein interaction inference. Nucleic Acids Res. 40, W147–W151 (2012).
    • 21. Garcia-Garcia J, Guney E, Aragues R, Planas-Iglesias J, Oliva B. Biana: a software framework for compiling biological interactions and analyzing networks. BMC Bioinformatics 11, 56 (2010).
    • 22. Ammari MG, Gresham CR, Mccarthy FM, Nanduri B. HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford) 2016, baw103 (2016).
    • 23. Finn RD, Coggill P, Eberhardt RY et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44(D1), D279–D285 (2016).
    • 24. Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R. DOMINE: a comprehensive collection of known and predicted domain–domain interactions. Nucleic Acids Res. 39, D730–D735 (2011).
    • 25. DOMPRINT: domain-domain interaction prediction server. http://crdd.osdd.net/raghava/domprint/index.html
    • 26. Durmus Tekir S, Cakir T, Ardic E et al. PHISTO: pathogen-host interaction search tool. Bioinformatics 29(10), 1357–1358 (2013).
    • 27. Shannon P, Markiel A, Ozier O et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).
    • 28. Uhlen M, Fagerberg L, Hallstrom BM et al. Proteomics. Tissue-based map of the human proteome. Science 347(6220), 1260419 (2015).
    • 29. Agarwal SM, Raghav D, Singh H, Raghava GP. CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res. 39, D975–D979 (2011).
    • 30. Mori S, Kusumoto-Matsuo R, Ishii Y, Takeuchi T, Kukimoto I. Replication interference between human papillomavirus types 16 and 18 mediated by heterologous E1 helicases. Virol. J. 11, 11 (2014).
    • 31. Kleba B, Stephens RS. Chlamydial effector proteins localized to the host cell cytoplasmic compartment. Infect. Immun. 76(11), 4842–4850 (2008).
    • 32. Murakami Y, Mizuguchi K. Homology-based prediction of interactions between proteins using averaged one-dependence estimators. BMC Bioinfo. 15, 213 (2014).
    • 33. Ramakrishnan G, Srinivasan N, Padmapriya P, Natarajan V. Homology-based prediction of potential protein-protein interactions between human erythrocytes and Plasmodium falciparum. Bioinform. Biol. Insights. 9, 195–206 (2015).
    • 34. Matthews LR, Vaglio P, Reboul J et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or ‘interologs’. Genome Res. 11(12), 2120–2126 (2001).
    • 35. Huo T, Liu W, Guo Y, Yang C, Lin J, Rao Z. Prediction of host–pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs. BMC Bioinformatics 16, 100 (2015).
    • 36. Espadaler J, Romero-Isart O, Jackson RM, Oliva B. Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics 21(16), 3360–3368 (2005).
    • 37. Deng M, Mehta S, Sun F, Chen T. Inferring domain-domain interactions from protein–protein interactions. Genome Res. 12(10), 1540–1548 (2002).
    • 38. Rejman Lipinski A, Heymann J, Meissner C et al. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog. 5(10), e1000615 (2009).
    • 39. Chen F, Cheng W, Zhang S, Zhong G, Yu P. Induction of IL-8 by Chlamydia trachomatis through MAPK pathway rather than NF-kappaB pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35(4), 307–313 (2010) (article in Chinese).
    • 40. Khan AA, Khan Z, Kalam MA. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction. Brief. Bioinform. 19(1), 12–22 (2016).
    • 41. Denks K, Spaeth EL, Joers K et al. Coinfection of Chlamydia trachomatis, Ureaplasma urealyticum and human papillomavirus among patients attending STD clinics in Estonia. Scand. J. Infect. Dis. 39(8), 714–718 (2007).
    • 42. Cai T, Wagenlehner FM, Mondaini N et al. Effect of human papillomavirus and Chlamydia trachomatis coinfection on sperm quality in young heterosexual men with chronic prostatitis-related symptoms. BJU Int. 113(2), 281–287 (2014).
    • 43. Igansi CN, Dos Santos VK, DR M et al. HPV and Chlamydia trachomatis genital infection among nonsymptomatic women: prevalence, associated factors and relationship with cervical lesions. Cad. Saude. Colet. 20(3), 287–296 (2012).