We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Phage-specific diverse effects of bacterial viruses on the immune system

    Andrzej Górski

    *Author for correspondence:

    E-mail Address: agorski@ikp.pl

    Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R Weigla 12, 53-114 Wrocław, Poland

    Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R Weigla 12, 53-114 Wrocław, Poland

    ,
    Ryszard Międzybrodzki

    Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R Weigla 12, 53-114 Wrocław, Poland

    Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R Weigla 12, 53-114 Wrocław, Poland

    Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland

    ,
    Ewa Jończyk-Matysiak

    Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R Weigla 12, 53-114 Wrocław, Poland

    ,
    Maciej Żaczek

    Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R Weigla 12, 53-114 Wrocław, Poland

    &
    Jan Borysowski

    Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland

    Published Online:https://doi.org/10.2217/fmb-2019-0222
    Free first page

    References

    • 1. Crunkhorn S. Phage therapy for Mycobacterium abscessus. Nat. Rev. Drug Discov. 18(7), 500 (2019).
    • 2. Aslam S, Courtwright AM, Koval C et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am. J. Transplant. doi:10.1111/ajt.15503 (2019) (Epub ahead of print).
    • 3. Dedrick RM, Guerrero-Bustamante CA, Garlena RA et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25(5), 730–733 (2019).
    • 4. Górski A, Międzybrodzki R, Węgrzyn G et al. Phage therapy: current status and perspectives. Med. Res. Rev. doi:10.1002/med.21593 (2019) (Epub ahead of print).
    • 5. Górski A, Jończyk-Matysiak E, Międzybrodzki R et al. Phage therapy: beyond antibacterial action. Front. Med. 5, 146 (2018).
    • 6. Górski A, Ważna E, Weber-Dąbrowska B et al. Bacteriophage translocation. FEMS Immunol. Med. Microbiol. 46, 313–319 (2006).
    • 7. Nguyen S, Baker K, Padman BS et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. MBio 8(6), e01874-17 (2017).
    • 8. Sweere JM, Van Belleghem JD, Ishak H et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363(6434), pii:eaat9691 (2019).
    • 9. Dąbrowska K, Miernikiewicz P, Piotrowicz A et al. Immunogenicity studies of proteins forming the T4 phage head surface. J. Virol. 88(21), 12551–12557 (2014).
    • 10. Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E et al. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front. Microbiol. 24(7), 1681 (2016).
    • 11. Dąbrowska K, Zembala M, Boratyński J et al. Hoc protein regulates the biological effects of T4 phage in mammals. Arch. Microbiol. 187, 489–498 (2007).
    • 12. Górski A, Międzybrodzki R, Borysowski J et al. Phage as a modulator of immune responses: practical implications for phage therapy. Adv. Virus Res. 83, 41–47 (2012).
    • 13. Van Belleghem JD, Clement F, Merabishvili M et al. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 7(1), 8004 (2017).
    • 14. Przybylski M, Dzieciątkowski T, Borysowski J et al. Inhibitory effects of bacteriophage preparations on adenoviral replication. Intervirology 62(1), 37–44 (2019).
    • 15. Sela U, Euler CW, Correa da Rosa J et al. Strains of bacterial species induce a greatly varied acute adaptive immune response: the contribution of the accessory genome. PLoS Pathog. 14(1), e1006726 (2018).
    • 16. Dufour N, Delattre R, Chevallereau A et al. Phage therapy of pneumonia is not associated with an over stimulation of the inflammatory response compared to antibiotic treatment in mice. Antimicrob. Agents Chemother. doi:10.1128/AAC.00379-19 (2019) (Epub ahead of print).
    • 17. Pincus NB, Reckhow JD, Saleem D et al. Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS ONE 10(4), e0124280 (2015).
    • 18. Borysowski J, Przybylski M, Międzybrodzki R et al. The effects of bacteriophages on the expression of genes involved in antimirobial immunity. Adv. Hyg. Exp. Med. 73, 414–420 (2019).
    • 19. Cha K, Oh HK, Jang JY et al. Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front. Microbiol. 9, 696 (2018).
    • 20. Stocki P, Wang XN, Dickinson AM. Inducible heat shock protein 70 reduces T cell responses and stimulatory capacity of monocyte-derived dendritic cells. J. Biol. Chem. 287(15), 12387–12394 (2012).
    • 21. Spierings J, Van Eden W. Heat shock proteins and their immunomodulatory role in inflammatory arthritis. Rheumatology (Oxford) 56(2), 198–208 (2017).
    • 22. Międzybrodzki R, Borysowski J, Kłak M et al. In vivo studies on the influence of bacteriophage preparations on the autoimmune inflammatory process. Biomed. Res. Int. 2017, 3612015 (2017).
    • 23. Luo X, Zuo X, Mo X et al. Treatment with recombinant Hsp72 suppresses collagen-induced arthritis in mice. Inflammation 34(5), 432–439 (2011).
    • 24. Górski A, Dąbrowska K, Międzybrodzki R et al. Phages and immunomodulation. Future Microbiol. 12, 905–914 (2017).
    • 25. Pruzzo C, Debbia EA, Satta G. Identification of the major adherence ligand of Klebsiella pneumoniae in the receptor for coliphage T7 and alteration of Klebsiella adherence properties by lysogenic conversion. Infect. Immun. 30(2), 562–571 (1980).
    • 26. Lehti TA, Pajunen MI, Skog MS et al. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Net. Commun. 8(1), 1915 (2017).
    • 27. Drake PM, Nathan JK, Stock CM et al. Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J. Immunol. 181(10), 6850–6858 (2008).
    • 28. Villanueva-Cabello TM, Gutierrez-Valenzuela LD, Lopez-Guerrero DV et al. Polysialic acid is expressed in human naïve CD4+ T cells and is involved in modulating activation. Glycobiology 29(7), 557–564 (2019).
    • 29. Vitiello CL, Merril CR, Adhya S. An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold. Virus Res. 114(1–2), 101–103 (2005).