We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Physiological and proteomic analysis of Stenotrophomonas maltophilia grown under the iron-limited condition

    Adleen Azman

    Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Kalidasan Vasodavan

    Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Narcisse Joseph

    Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Suresh Kumar

    Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Rukman A Hamat

    Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Syafinaz A Nordin

    Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    ,
    Wan M Aizat

    Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

    ,
    Alex van Belkum

    bioMérieux, Scientific Office, La Balme les Grottes, France

    &
    Vasantha K Neela

    *Author for correspondence: Tel.: +60 389 472 507;

    E-mail Address: neela2000@hotmail.com

    Department of Medical Microbiology and Parasitology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

    Published Online:https://doi.org/10.2217/fmb-2019-0174

    Aims: To study physiological and proteomic analysis of Stenotrophomonas maltophilia grown under iron-limited condition. Methods: One clinical and environmental S. maltophilia isolates grown under iron-depleted conditions were studied for siderophore production, ability to kill nematodes and alteration in protein expression using isobaric tags for relative and absolute quantification (ITRAQ). Results & conclusions: Siderophore production was observed in both clinical and environmental strains under iron-depleted conditions. Caenorhabditis elegans assay showed higher killing rate under iron-depleted (96%) compared with normal condition (76%). The proteins identified revealed, 96 proteins upregulated and 26 proteins downregulated for the two isolates under iron depletion. The upregulated proteins included several iron acquisition proteins, metabolic proteins and putative virulence proteins.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ryan RP, Monchy S, Cardinale M et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7(7), 514–525 (2009).
    • 2. Brooke JS. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25(1), 2–41 (2012). • Review summarizes the current literature and presents Stenotrophomonas maltophilia as an organism with various molecular mechanisms used for colonization and infection.
    • 3. Looney WJ. Role of Stenotrophomonas maltophilia in hospital-acquired infection. Br. J. Biomed. Sci. 62(3), 145–154 (2005).
    • 4. Samonis G, Karageorgopoulos DE, Maraki S et al. Stenotrophomonas maltophilia infections in a general hospital: patient characteristics, antimicrobial susceptibility, and treatment outcome. PLoS ONE 7(5), e37375 (2012).
    • 5. Al-Anazi KA, Al-Jasser AM, Alsaleh K. Infections caused by Stenotrophomonas maltophilia in recipients of hematopoietic stem cell transplantation. Front. Oncol. 4, 231 (2014).
    • 6. De Oliveira-Garcia D, Dall'Agnol M, Rosales M, Azzuz ACGS, Martinez MB, Girón JA. Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerg. Infect. Dis. 8(9), 918–923 (2002).
    • 7. Di Bonaventura G, Prosseda G, Del Chierico F et al. Molecular characterization of virulence determinants of Stenotrophomonas maltophilia strains isolated from patients affected by cystic fibrosis. Int. J. Immunopathol. Pharmacol. 20(3), 529–537 (2007).
    • 8. McKay GA, Woods DE, MacDonald KL, Poole K. Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect. Immun. 71(6), 3068–3075 (2003).
    • 9. García CA, Passerini De Rossi B, Alcaraz E, Vay C, Franco M. Siderophores of Stenotrophomonas maltophilia: detection and determination of their chemical nature. Rev. Argent. Microbiol. 44(3), 150–154 (2012). •• Detect S. maltophilia siderophores and their chemical nature. from 31 S. maltophilia isolates from device-associated infections, using chrome azurol S (CAS) agar assay.
    • 10. Roscetto E, Angrisano T, Costa V et al. Functional characterization of the RNA Chaperone Hfq in the opportunistic human pathogen Stenotrophomonas maltophilia. J. Bacteriol. 194(21), 5864–5874 (2012).
    • 11. Karaba SM, White RC, Cianciotto NP. Stenotrophomonas maltophilia encodes a Type II protein secretion system that promotes detrimental effects on lung epithelial cells. Infect. Immun. 81(9), 3210–3219 (2013).
    • 12. García CA, Alcaraz ES, Franco MA, Rossi BNP De. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence. Front. Microbiol. 6(926), 1–14 (2015). •• Assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, outer membrane proteins regulation, quorum sensing (QS) and virulence.
    • 13. Zheng L, Wang FF, Ren BZ, Liu W, Liu Z, Qian W. Systematic mutational analysis of histidine kinase genes in the nosocomial pathogen Stenotrophomonas maltophilia identifies BfmAK system control of biofilm development. Appl. Environ. Microbiol. 82(8), 2444–2456 (2016).
    • 14. Figueiredo PMS, Furumura MT, Santos AM et al. Cytotoxic activity of clinical Stenotrophomonas maltophilia. Lett. Appl. Microbiol. 43(4), 443–449 (2006).
    • 15. Thomas R, Hamat RA, Neela V. Stenotrophomonas maltophilia: pathogenesis model using Caenorhabditis elegans. J. Med. Microbiol. 62(Part 11), 1777–1779 (2013). •• Pathogenesis model of S. maltophilia using Caenorhabditis elegans
    • 16. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27(2–3), 215–237 (2003).
    • 17. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 6(8), 1–2 (2010).
    • 18. Kalidasan V, Joseph N, Kumar S, Hamat RA, Neela VK. The ‘Checkmate’ for iron between human host and invading bacteria: chess game analogy. Indian J. Microbiol. 58(3), 257–267 (2018).
    • 19. Marx JJM. Iron and infection: competition between host and microbes for a precious element. Best Pract. Res. Cl. Ha. 15(2), 411–426 (2002).
    • 20. Kalidasan V, Azman A, Joseph N, Kumar S, Awang Hamat R, Neela V. Putative Iron Acquisition Systems in Stenotrophomonas maltophilia. Molecules. 23(8), 2048 (2018). •• Identification of various iron acquisition systems and iron sources utilized during iron starvation in S. maltophilia.
    • 21. Kalidasan V, Joseph N, Kumar S, Awang Hamat R, Neela VK. Iron and virulence in Stenotrophomonas maltophilia: all we know so far. Front. Cell. Infect. Microbiol. 8, 1–8 (2018).
    • 22. Devos S, Van Oudenhove L, Stremersch S et al. The effect of imipenem and diffusible signaling factors on the secretion of outer membrane vesicles and associated Ax21 proteins in Stenotrophomonas maltophilia. Front. Microbiol. 6, 1–9 (2015).
    • 23. Ferrer-navarro M, Torrent G, Gibert I, Daura X. Proteomic analysis of outer membrane proteins and vesicles of a clinical isolate and a collection strain of Stenotrophomonas maltophilia. J. Proteom. 16(142), 122–129 (2016). •• Characterization of the outer membrane proteins and native OMV subproteomes of a clinical isolate and ATCC13637 of S. maltophilia
    • 24. Liu W, Zou D, Wang X et al. Proteomic Analysis of Clinical Isolate of Stenotrophomonas maltophilia with bla. J. Proteome Res. 11, 4024–4033 (2012).
    • 25. Van Oudenhove L, De Vriendt K, Van Beeumen J, Mercuri PS, Devreese B. Differential proteomic analysis of the response of Stenotrophomonas maltophilia to imipenem. Appl. Microbiol. Biotechnol. 95(3), 717–733 (2012).
    • 26. Di Bonaventura G, Prosseda G, Del Chierico F et al. Molecular characterization of virulence determinants of Stenotrophomonas maltophilia strains isolated from patients affected by cystic fibrosis. Int. J. Immunopathol. Pharmacol. 20(3), 529–537 (2007). • Characterization of 13 S. maltophilia strains for the expression of several virulence-associated factor.
    • 27. Mahdi O, Eklund B, Fisher N. Laboratory culture and maintenance of Stenotrophomonas maltophilia. Curr. Protoc. Microbiol. 32, Unit 6F (2014).
    • 28. Nicoletti M, Iacobino A, Prosseda G et al. Stenotrophomonas maltophilia strains from cystic fibrosis patients: genomic variability and molecular characterization of some virulence determinants. Int. J. Med. Microbiol. 301(1), 34–43 (2011).
    • 29. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160(1), 47–56 (1987).
    • 30. Sutphin GL, Kaeberlein M. Measuring Caenorhabditis elegans life span on solid media. J. Vis. Exp. 27, 1152 (2009). • Generalized protocol for measuring life span of nematodes maintained on solid nematode growth media.
    • 31. Casey T, Solomon PS, Bringans S, Tan KC, Oliver RP, Lipscombe R. Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification. Proteomics. 10(1), 38–47 (2010).
    • 32. Overbeek R, Olson R, Pusch GD et al. The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42(D1), 1–9 (2014).
    • 33. Berg G, Roskot N, Smalla K. Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J. Clin. Microbiol. 37(11), 3594–3600 (1999).
    • 34. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc. Natl Acad. Sci. USA 99(10), 7072–7077 (2002).
    • 35. Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML. GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol. 45(5), 1277–1287 (2002).
    • 36. Kim EJ, Sabra W, Zeng AP. Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology. 149(9), 2627–2634 (2003).
    • 37. Yang Z, Ma X, Tong L, Kaplan HB, Shimkets LJ, Shi W. Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182(20), 5793–5798 (2000).
    • 38. Tian B, Yang J, Zhang K-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects: Nematophagous bacteria. FEMS Microbiol. Ecol. 61(2), 197–213 (2007).
    • 39. R G, Q B, P L. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59(1), 15–32 (2002).
    • 40. Kumar D, Bhalla TC. Microbial proteases in peptide synthesis: approaches and applications. Appl. Microbiol. Biotechnol. 68(6), 726–736 (2005).
    • 41. Brandelli A, Sala L, Kalil SJ. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res. Int. 73, 3–12 (2015).
    • 42. Lian LH, Tian BY, Xiong R, Zhu MZ, Xu J, Zhang KQ. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett. Appl. Microbiol. 45(3), 262–269 (2007).
    • 43. Siddiqui IA, Haas D, Heeb S. Extracellular protease of pseudomonas fluorescens CHA0, a biocontrol factor with activity against the Root-Knot Nematode Meloidogyne incognita. Appl. Environ. Microbiol. 71(9), 5646–5649 (2005).
    • 44. Jankiewicz U, Larkowska E, Swiontek Brzezinska M. Production, characterization, gene cloning, and nematocidal activity of the extracellular protease from Stenotrophomonas maltophilia N4. J. Biosci. Bioeng. 121(6), 614–618 (2016).
    • 45. Thomas R, Hamat RA, Neela V. Extracellular enzyme profiling of Stenotrophomonas maltophilia clinical isolates. Virulence. 5(2), 326–330 (2014).
    • 46. Lam H, Oh D, Cava F et al. D-amino acids govern stationary phase cell wall re-modeling in bacteria. Science. 325(5947), 1552–1555 (2009).
    • 47. Ni Y, Song L, Qian X, Sun Z. Proteomic analysis of Pseudomonas putida reveals an organic solvent tolerance-related gene mmsB. PLoS ONE 8(2), e55858 (2013).
    • 48. Aneja P, Charles TC. Poly-3-hydroxybutyrate degradation in rhizobium (Sinorhizobium) meliloti: isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J. Bacteriol. 181(3), 849–857 (1999).
    • 49. Nunvar J, Elhottova D, Chronakova A, Schneider B, Licha I. Draft genome sequence of Stenotrophomonas maltophilia strain 5BA-I-2, a soil isolate and a member of a phylogenetically basal lineage. Genome Announc. 2(2), e00134-14–e00134-14 (2014).
    • 50. Moeck GS, Coulton JW. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol. Microbiol. 28(4), 675–681 (1998).
    • 51. Henderson B, Martin A. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun. 79(9), 3476–3491 (2011).