We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Neurological and cognitive significance of probiotics: a holy grail deciding individual personality

    Muhammad Afzal

    College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan

    ,
    Sayyeda Farwa Mazhar

    College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan

    ,
    Sadia Sana

    College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan

    ,
    Muhammad Naeem

    College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan

    ,
    Muhammad Hidayat Rasool

    Department of Microbiology, Government College University Faisalabad, Pakistan

    ,
    Muhammad Saqalein

    Department of Microbiology, Government College University Faisalabad, Pakistan

    ,
    Muhammad Atif Nisar

    Department of Microbiology, Government College University Faisalabad, Pakistan

    ,
    Maria Rasool

    College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan

    Department of Microbiology, Government College University Faisalabad, Pakistan

    ,
    Muhammad Bilal

    School of Life Science & Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China

    ,
    Abdul Arif Khan

    Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

    &
    Mohsin Khurshid

    *Author for correspondence: Tel.: +92 333 430 1513;

    E-mail Address: mohsin.mic@gmail.com

    Department of Microbiology, Government College University Faisalabad, Pakistan

    Published Online:https://doi.org/10.2217/fmb-2019-0143

    The role of the human microbiome in the brain and behavioral development is an area of increasing attention. Recent investigations have found that diverse mechanisms and signals including the immune, endocrine and neural associations are responsible for the communication between gut microbiota and the brain. The studies have suggested that alteration of intestinal microbiota using probiotic formulations may offer a significant role in the maturation and organization of the brain and can shape the brain and behavior as well as mood and cognition in human subjects. The understanding of the possible impact of gut microflora on neurological function is a promising phenomenon that can surely transform the neurosciences and may decipher the novel etiologies for neurodegenerative and psychiatric disorders.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC. Microbes and mental health: a review. Brain Behav. Immun. 66, 9–17 (2017).
    • 2. Khan AA, Khurshid M, Khan S, Alshamsan A. Gut microbiota and probiotics: current status and their role in cancer therapeutics. Drug Develop. Res. 74(6), 365–375 (2013).
    • 3. Khurshid M, Aslam B, Nisar MA et al. Bacterial munch for infants: potential pediatric therapeutic interventions of probiotics. Future Microbiol. 10(11), 1881–1895 (2015).
    • 4. Khan AA, Shrivastava A, Khurshid M. Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochim. Biophys. Acta Rev. Cancer. 1826(2), 331–337 (2012).
    • 5. Lankelma JM, Nieuwdorp M, de Vos WM, Wiersinga WJ. The gut microbiota in internal medicine: implications for health and disease. Neth. J. Med. 73(2), 61–68 (2015).
    • 6. Bermon S, Petriz B, Kajeniene A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc. Immunol. Rev. 21, 70–79 (2015).
    • 7. Tillisch K. The effects of gut microbiota on CNS function in humans. Gut Microbes 5(3), 404–410 (2014).
    • 8. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J. Clin. Invest. 125(3), 926–938 (2015).
    • 9. Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell. Microbiol. 18(5), 632–644 (2016).
    • 10. Li Q, Zhou JM. The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 324, 131–139 (2016).
    • 11. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome–brain–gut axis communication. Adv. Exp. Med. Biol. 817, 115–133 (2014).
    • 12. O'Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).
    • 13. Umbrello G, Esposito S. Microbiota and neurologic diseases: potential effects of probiotics. J. Transl. Med. 14(1), 298 (2016).
    • 14. Mazhar SF, Afzal M, Almatroudi A et al. The prospects for the therapeutic implications of genetically engineered probiotics. J. Food Qual. 2020, 9676452 (2020).
    • 15. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 8(1), 52 (2016).
    • 16. Bakirtzi K, Law IK, Xue X, Iliopoulos D, Shah YM, Pothoulakis C. Neurotensin promotes the development of colitis and intestinal angiogenesis via Hif-1alpha-miR-210 signaling. J. Immunol. 196(10), 4311–4321 (2016).
    • 17. Shahid M, Hussain B, Riaz D, Khurshid M, Ismail M, Tariq M. Identification and partial characterization of potential probiotic lactic acid bacteria in freshwater Labeo rohita and Cirrhinus mrigala. Aquac. Res. 48(4), 1688–1698 (2017).
    • 18. Sornplang P, Piyadeatsoontorn S. Probiotic isolates from unconventional sources: a review. J. Anim. Sci. Technol. 58, 26 (2016).
    • 19. Rajoka MSR, Mehwish HM, Zhang H et al. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf. B Biointerfaces. 186, 110734 (2020).
    • 20. Rajoka MSR, Mehwish HM, Fang H et al. Characterization and anti-tumor activity of exopolysaccharide produced by Lactobacillus kefiri isolated from Chinese kefir grains. J. Funct. Foods. 63, 103588 (2019).
    • 21. George Kerry R, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: s review. J. Food Drug Anal. 26(3), 927–939 (2018).
    • 22. Guarner F, Khan AG, Garisch J et al. World Gastroenterology Organisation practice guideline: probiotics and prebiotics - May 2008. S. Afr. Gastroenterol. Rev. 6(2), 14–25 (2008).
    • 23. Khurshid M, Akash MS. Probiotic preparations for infantile gastroenteritis: the clinical and economic perspective. Future Microbiol. doi: https://doi.org/10.2217/fmb-2019-0111 (2020) (Epub ahead of print).
    • 24. Hempel S, Newberry SJ, Maher AR et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA. 307(18), 1959–1969 (2012).
    • 25. Guarino A, Albano F, Ashkenazi S et al. European Society for Paediatric Gastroenterology, Hepatology, and Nutrition/European Society for Paediatric Infectious Diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe. J. Pediatr. Gastroenterol. Nutr. 46(Suppl. 2), S81–122 (2008).
    • 26. Rafter J. Lactic acid bacteria and cancer: mechanistic perspective. Br. J. Nutr. 88(Suppl. 1), S89–94 (2002).
    • 27. Legesse Bedada T, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ. Probiotics for cancer alternative prevention and treatment. Biomed. Pharmacother. 129, 110409 (2020).
    • 28. Olivares M, Laparra M, Sanz Y. Bifidobacterium longumInfluence of CECT 7347 and gliadin peptides on intestinal epithelial cell proteome. J. Agric. Food Chem. 59(14), 7666–7671 (2011).
    • 29. Laparra JM, Olivares M, Gallina O, Sanz Y. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model. PLoS ONE 7(2), e30744 (2012).
    • 30. Fallani M, Young D, Scott J et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 51(1), 77–84 (2010).
    • 31. Wright G, Chattree A, Jalan R. Management of hepatic encephalopathy. Int. J. Hepatol. 2011, 841407 (2011).
    • 32. Holte K, Krag A, Gluud LL. Systematic review and meta-analysis of randomized trials on probiotics for hepatic encephalopathy. Hepatol. Res. 42(10), 1008–1015 (2012).
    • 33. Liu L, Li P, Liu Y, Zhang Y. Efficacy of probiotics and synbiotics in patients with nonalcoholic fatty liver disease: a meta-analysis. Dig. Dis. Sci. 64(12), 3402–3412 (2019).
    • 34. Waigankar SS, Patel V. Role of probiotics in urogenital healthcare. J. Midlife Health. 2(1), 5–10 (2011).
    • 35. Shen ZH, Zhu CX, Quan YS et al. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 24(1), 5–14 (2018).
    • 36. Shen J, Zuo ZX, Mao AP. Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn's disease, and pouchitis: meta-analysis of randomized controlled trials. Inflamm. Bowel Dis. 20(1), 21–35 (2014).
    • 37. Cain AM, Karpa KD. Clinical utility of probiotics in inflammatory bowel disease. Altern. Ther. Health Med. 17(1), 72–79 (2011).
    • 38. Penders J, Stobberingh EE, Thijs C et al. Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clin. Exp. Allergy. 36(12), 1602–1608 (2006).
    • 39. Michail S. The role of probiotics in allergic diseases. Allergy Asthma Clin. Immunol. 5(1), 5 (2009).
    • 40. Kiousi DE, Karapetsas A, Karolidou K, Panayiotidis MI, Pappa A, Galanis A. Probiotics in extraintestinal diseases: current trends and new directions. Nutrients. 11(4), 788 (2019).
    • 41. Yoosuf S, Makharia GK. Evolving therapy for celiac disease. Front. Pediatr. 7, 193 (2019).
    • 42. Tabrizi R, Ostadmohammadi V, Akbari M et al. The Effects of Probiotic Supplementation on Clinical Symptom, Weight Loss, Glycemic Control, Lipid and Hormonal Profiles, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Probiotics Antimicrob. Proteins. doi: https://doi.org/10.1007/s12602-019-09559-0 (2019) (Epub ahead of print).
    • 43. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13(10), 701–712 (2012).
    • 44. Yatsunenko T, Rey FE, Manary MJ et al. Human gut microbiome viewed across age and geography. Nature. 486(7402), 222–227 (2012).
    • 45. Pacheco AR, Barile D, Underwood MA, Mills DA. The impact of the milk glycobiome on the neonate gut microbiota. Annu. Rev. Anim. Biosci. 3, 419–445 (2015).
    • 46. Hunt KM, Foster JA, Forney LJ et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 6(6), e21313 (2011).
    • 47. Rinninella E, Raoul P, Cintoni M et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 7(1), 14 (2019).
    • 48. Montiel-Castro AJ, Gonzalez-Cervantes RM, Bravo-Ruiseco G, Pacheco-Lopez G. The microbiota–gut–brain axis: neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 7, 70 (2013).
    • 49. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 10(11), 735–742 (2012).
    • 50. Braniste V, Al-Asmakh M, Kowal C et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl. Med. 6(263), 263ra158 (2014).
    • 51. Williams BB, Van Benschoten AH, Cimermancic P et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 16(4), 495–503 (2014).
    • 52. Sudo N. Role of microbiome in regulating the HPA axis and its relevance to allergy. Chem. Immunol. Allergy. 98, 163–175 (2012).
    • 53. Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol. 19(7), 349–359 (2011).
    • 54. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. Gamma-aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113(2), 411–417 (2012).
    • 55. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays. 33(8), 574–581 (2011).
    • 56. Mazzoli R, Pessione E. The Neuro-endocrinological role of microbial glutamate and GABA signaling. Front. Microbiol. 7, 1934 (2016).
    • 57. Kimura I, Inoue D, Maeda T et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108(19), 8030–8035 (2011).
    • 58. Vecsey CG, Hawk JD, Lattal KM et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27(23), 6128–6140 (2007).
    • 59. Alexander KS, Pocivavsek A, Wu HQ, Pershing ML, Schwarcz R, Bruno JP. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience 238, 19–28 (2013).
    • 60. Sudo N, Chida Y, Aiba Y et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 558(Pt 1), 263–275 (2004).
    • 61. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 14(6), 401–416 (2013).
    • 62. Clarke G, Grenham S, Scully P et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18(6), 666–673 (2013).
    • 63. Selkrig J, Wong P, Zhang X, Pettersson S. Metabolic tinkering by the gut microbiome: implications for brain development and function. Gut Microbes 5(3), 369–380 (2014).
    • 64. Bercik P, Denou E, Collins J et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141(2), 599–609 609.e591–593 (2011).
    • 65. Bravo JA, Forsythe P, Chew MV et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108(38), 16050–16055 (2011).
    • 66. Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil. 26(11), 1615–1627 (2014).
    • 67. Messaoudi M, Lalonde R, Violle N et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105(5), 755–764 (2011).
    • 68. Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 287, 59–72 (2015).
    • 69. Pyndt Jorgensen B, Hansen JT, Krych L et al. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice. PLoS ONE 9(8), e103398 (2014).
    • 70. Tillisch K, Labus J, Kilpatrick L et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144(7), 1394–1401 1401.e1391–1394 (2013).
    • 71. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav. Immun. 48, 258–264 (2015).
    • 72. Stilling RM, Bordenstein SR, Dinan TG, Cryan JF. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol. 4, 147 (2014).
    • 73. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19(2), 146–148 (2014).
    • 74. Theis KR, Venkataraman A, Dycus JA et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl Acad. Sci. USA 110(49), 19832–19837 (2013).
    • 75. Venu I, Durisko Z, Xu J, Dukas R. Social attraction mediated by fruit flies' microbiome. J. Exp. Biol. 217(Pt 8), 1346–1352 (2014).
    • 76. Kang DW, Park JG, Ilhan ZE et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8(7), e68322 (2013).
    • 77. Hsiao EY, McBride SW, Hsien S et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7), 1451–1463 (2013). •• As the findings support the connection between the gut microbiome and brain in the autism spectrum disorder mouse model and reported a potential probiotic for the therapeutic management of human neurodevelopmental disorders.
    • 78. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107(27), 12204–12209 (2010).
    • 79. de Theije CG, Wopereis H, Ramadan M et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav. Immun. 37, 197–206 (2014).
    • 80. Yano JM, Yu K, Donaldson GP et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2), 264–276 (2015).
    • 81. Marcobal A, Kashyap PC, Nelson TA et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 7(10), 1933–1943 (2013).
    • 82. Gershon MD. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 20(1), 14–21 (2013).
    • 83. Fukumoto S, Tatewaki M, Yamada T et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284(5), R1269–1276 (2003).
    • 84. O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48 (2015).
    • 85. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C. Bacterial neuroactive compounds produced by psychobiotics. Adv. Exp. Med. Biol. 817, 221–239 (2014).
    • 86. Lucas P, Landete J, Coton M, Coton E, Lonvaud-Funel A. The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol. Lett. 229(1), 65–71 (2003).
    • 87. Kuley E, Ozogul F, Balikci E, Durmus M, Ayas D. The influences of fish infusion broth on the biogenic amines formation by lactic acid bacteria. Braz. J. Microbiol. 44(2), 407–415 (2013).
    • 88. Hyland NP, Cryan JF. A gut feeling about GABA: focus on GABA(B) Receptors. Front. Pharmacol. 1, 124 (2010).
    • 89. Li Y, Xiang YY, Lu WY, Liu C, Li J. A novel role of intestine epithelial GABAergic signaling in regulating intestinal fluid secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 303(4), G453–460 (2012).
    • 90. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9(1), 46–56 (2008). • Interesting review describing the role of Inflammation in the major depressive episodes.
    • 91. Dantzer R, Konsman JP, Bluthe RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton. Neurosci. 85(1–3), 60–65 (2000).
    • 92. van Dam AM, Brouns M, Louisse S, Berkenbosch F. Appearance of interleukin-1 in macrophages and in ramified microglia in the brain of endotoxin-treated rats: a pathway for the induction of non-specific symptoms of sickness? Brain Res. 588(2), 291–296 (1992).
    • 93. Bluthe RM, Kelley KW, Dantzer R. Effects of insulin-like growth factor-I on cytokine-induced sickness behavior in mice. Brain Behav. Immun. 20(1), 57–63 (2006).
    • 94. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27(1), 24–31 (2006).
    • 95. Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 158, 52–62 (2016).
    • 96. Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr. Opin. Clin. Nutr. Metab. Care. 18(6), 552–558 (2015).
    • 97. Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol. Motil. 22(2), 201–212 (2016).
    • 98. Diamanti AP, Manuela Rosado M, Lagana B, D'Amelio R. Microbiota and chronic inflammatory arthritis: an interwoven link. J. Transl. Med. 14(1), 233 (2016).
    • 99. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108(Suppl. 1), 4615–4622 (2011).
    • 100. Berer K, Mues M, Koutrolos M et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374), 538–541 (2011).
    • 101. Scheperjans F, Aho V, Pereira PA et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30(3), 350–358 (2015).
    • 102. Cassani E, Barichella M, Cancello R et al. Increased urinary indoxyl sulfate (indican): new insights into gut dysbiosis in Parkinson's disease. Parkinsonism Relat. Disord. 21(4), 389–393 (2015).
    • 103. Wu S, Yi J, Zhang YG, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep. 3(4), e12356 (2015).
    • 104. Tremlett H, Fadrosh DW, Faruqi AA et al. Gut microbiota composition and relapse risk in pediatric MS: A pilot study. J. Neurol. Sci. 363, 153–157 (2016).
    • 105. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 170(4), 1179–1188 (2010). •• Describing the role for Bifidobacteria in neural function.
    • 106. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 43(2), 164–174 (2008).
    • 107. Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage. 125, 988–995 (2016).
    • 108. O'Mahony SM, Marchesi JR, Scully P et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry. 65(3), 263–267 (2009).
    • 109. Donato KA, Gareau MG, Wang YJ, Sherman PM. Lactobacillus rhamnosus GG attenuates interferon-{gamma} and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 156(Pt 11), 3288–3297 (2010).
    • 110. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246, 199–229 (2013).
    • 111. Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30(4), 297–306 (2013).
    • 112. Kato-Kataoka A, Nishida K, Takada M et al. Fermented milk containing lactobacillus casei strain shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl. Environ. Microbiol. 82(12), 3649–3658 (2016).
    • 113. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 61(3), 355–361 (2007).
    • 114. Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition 32(3), 315–320 (2016).
    • 115. Allen AP, Hutch W, Borre YE et al. Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl. Psychiatry 6(11), e939 (2016).
    • 116. Rao AV, Bested AC, Beaulne TM et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 1(1), 6 (2009).
    • 117. Takada M, Nishida K, Gondo Y et al. Beneficial effects of Lactobacillus casei strain Shirota on academic stress-induced sleep disturbance in healthy adults: a double-blind, randomised, placebo-controlled trial. Benef. Microbes. 8(2), 153–162 (2017).
    • 118. Kaluzna-Czaplinska J, Blaszczyk S. The level of arabinitol in autistic children after probiotic therapy. Nutrition 28(2), 124–126 (2012).
    • 119. Akbari E, Asemi Z, Daneshvar Kakhaki R et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8, 256 (2016).
    • 120. Bharwani A, Mian MF, Surette MG, Bienenstock J, Forsythe P. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med. 15(1), 7 (2017).
    • 121. Davari S, Talaei SA, Alaei H, Salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience. 240, 287–296 (2013).
    • 122. Kouchaki E, Tamtaji OR, Salami M et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 36(5), 1245–1249 (2017).
    • 123. Liang S, Wang T, Hu X et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 310, 561–577 (2015).
    • 124. Aziz Q, Dore J, Emmanuel A, Guarner F, Quigley EM. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol. Motil. 25(1), 4–15 (2013).
    • 125. Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC. Altered synapses and gliotransmission in Alzheimer's disease and AD model mice. Neurobiol. Aging. 34(10), 2341–2351 (2013).
    • 126. Talaei SA, Azami A, Salami M. Postnatal development and sensory experience synergistically underlie the excitatory/inhibitory features of hippocampal neural circuits: glutamatergic and GABAergic neurotransmission. Neuroscience 318, 230–243 (2016).