We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Eravacycline: a new treatment option for complicated intra-abdominal infections in the age of multidrug resistance

    Joseph S Solomkin

    *Author for correspondence:

    E-mail Address: solomkjs@ucmail.uc.edu

    Department of Surgery, University of Cincinnati College of Medicine, 6005 Given Road Cincinnati, OH 45243, USA

    ,
    Angie Sway

    Medical Writing, World Surgical Infection Society, Cincinnati, OH 45243, USA

    ,
    Kenneth Lawrence

    Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA

    ,
    Melanie Olesky

    Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA

    ,
    Sergey Izmailyan

    Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA

    &
    Larry Tsai

    Medical Affairs, Tetraphase Pharmaceuticals, Watertown, MA 02472, USA

    Published Online:https://doi.org/10.2217/fmb-2019-0135

    Aim: Recently approved for use in complicated intra-abdominal infection, eravacycline is a novel fluorocycline with broad spectrum of activity against resistant Gram-negative pathogens. This manuscript is a pooled analysis of two Phase III trials. Clinical efficacy: Clinical cure rates were 86.8% for eravacycline versus 87.6% for ertapenem, and 90.8% for eravacycline versus 91.2% for meropenem in the Intent to Treat (micro-ITT) populations, and 87.0% for eravacycline versus 88.8% ertapenem, and 92.4 versus 91.6% for meropenem in the Modified Intent to Treat (MITT) populations. Safety: Eravacycline is well tolerated, with lower rates of nausea, vomiting and diarrhea than other tetracyclines. Conclusion: Eravacycline is an effective new option for use in complicated intra-abdominal infections, and in particular, for the treatment of extended-spectrum β-lactamase- and carbapenem-resistant Enterobacteriaceae-expressing organisms.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. European Centre for Disease Prevention and Control. Antimicrobial resistance. https://www.ecdc.europa.eu/en/antimicrobial-resistance
    • 2. Infectious Diseases Society of America. Antimicrobial resistance: a public health crisis (2016).
    • 3. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States (2013). https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
    • 4. World Health Organization. Antimicrobial resistance (2018). https://www.who.int/antimicrobial-resistance/en/
    • 5. Chong Y, Shimoda S, Shimono N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 61, 185–188 (2018).
    • 6. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J. Antimicrob. Chemother. 60(5), 913–920 (2007).
    • 7. Thabit AK, Crandon JL, Nicolau DP. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 16(2), 159–177 (2015).
    • 8. Girometti N, Lewis RE, Giannella M et al. Klebsiella pneumoniae bloodstream infection: epidemiology and impact of inappropriate empirical therapy. Medicine 93(17), 298–309 (2014).
    • 9. Frere JM, Sauvage E, Kerff F. From ‘an enzyme able to destroy penicillin’ to carbapenemases: 70 years of β-lactamase misbehaviour. Curr. Drug Targets 17(9), 974–982 (2016).
    • 10. Harris P TP, David Lye D, Mo Y. The MERINO trial: piperacillin-tazobactam versus meropenem for the definitive treatment of bloodstream infections caused by third-generation cephalosporin nonsusceptible Escherichia coli or Klebsiella spp.: an international multi-centre open label non-inferiority randomised controlled trial. Presented at: European Congress of Clinical Microbiology and Infectious Diseases. Madrid, Spain, 21–24 April 2018.
    • 11. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J. Infect. Dis. 215(Suppl. 1), S28–S36 (2017).
    • 12. Molton JS, Tambyah PA, Ang BS, Ling ML, Fisher DA. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin. Infect. Dis. 56(9), 1310–1318 (2013).
    • 13. Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-β-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 31(2), pii:e00079-17 (2018).
    • 14. Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM. Plazomicin: a novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 79(3), 243–269 (2019).
    • 15. Peri AM, Doi Y, Potoski BA, Harris PNA, Paterson DL, Righi E. Antimicrobial treatment challenges in the era of carbapenem resistance. Diagn. Microbiol. Infect. Dis. 94(4), 413–425 (2019).
    • 16. Petty LA, Henig O, Patel TS, Pogue JM, Kaye KS. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant Enterobacteriaceae. Infect. Drug Resist. 11, 1461–1472 (2018).
    • 17. Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front. Microbiol. 10, 80 (2019).
    • 18. Manenzhe RI, Zar HJ, Nicol MP, Kaba M. The spread of carbapenemase-producing bacteria in Africa: a systematic review. J. Antimicrob. Chemother. 70(1), 23–40 (2015).
    • 19. Surveillance of antimicrobial resistance in Europe – annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. In: Antimicrobial Resistance Surveillance in Europe. European Centre for Disease Prevention and Control, Stockholm, Sweden (2018).
    • 20. Lob SH, Biedenbach DJ, Badal RE, Kazmierczak KM, Sahm DF. Antimicrobial resistance and resistance mechanisms of Enterobacteriaceae in ICU and non-ICU wards in Europe and North America: SMART 2011–2013. J. Global Antimicrob. Resist. 3(3), 190–197 (2015).
    • 21. McDanel J, Schweizer M, Crabb V et al. Incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect. Control Hosp. Epidemiol. 38(10), 1209–1215 (2017).
    • 22. Jean SS, Hsueh PR. Distribution of ESBLs, AmpC β-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–14: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J. Antimicrob. Chemother. 72(1), 166–171 (2017).
    • 23. Mazuski JE, Solomkin JS. Intra-abdominal infections. Surg. Clin. North Am. 89(2), 421–437 (2009).
    • 24. Edelsberg J, Berger A, Schell S, Mallick R, Kuznik A, Oster G. Economic consequences of failure of initial antibiotic therapy in hospitalized adults with complicated intra-abdominal infections. Surg. Infect. 9(3), 335–347 (2008).
    • 25. Tellado JM, Sen SS, Caloto MT, Kumar RN, Nocea G. Consequences of inappropriate initial empiric parenteral antibiotic therapy among patients with community-acquired intra-abdominal infections in Spain. Scandinavian J. Infect. Dis. 39(11–12), 947–955 (2007).
    • 26. Chong YP, Bae IG, Lee SR et al. Clinical and economic consequences of failure of initial antibiotic therapy for patients with community-onset complicated intra-abdominal infections. PLoS ONE 10(4), e0119956 (2015).
    • 27. Mazuski JE, Tessier JM, May AK et al. The Surgical Infection Society revised guidelines on the management of intra-abdominal infection. Surg. Infect. 18(1), 1–76 (2017).
    • 28. Solomkin JS, Mazuski JE, Bradley JS et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 50(2), 133–164 (2010).
    • 29. Sartelli M, Chichom-Mefire A, Labricciosa FM et al. The management of intra-abdominal infections from a global perspective: 2017 WSES guidelines for management of intra-abdominal infections. World J. Emerg. Surg. 12, 29 (2017).
    • 30. Allegranzi B, Bischoff P, de Jonge S et al. New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect. Dis. 16(12), e276–e287 (2016).
    • 31. Berrios-Torres SI, Umscheid CA, Bratzler DW et al. Centers for Disease Control and Prevention Guideline for the prevention of surgical site infection, 2017. JAMA Surg. 152(8), 784–791 (2017).
    • 32. Edelsberg J, Berger A, Weber DJ, Mallick R, Kuznik A, Oster G. Clinical and economic consequences of failure of initial antibiotic therapy for hospitalized patients with complicated skin and skin-structure infections. Infect. Control Hosp. Epidemiol. 29(2), 160–169 (2008).
    • 33. Bartlett JG, Onderdonk AB, Louie T, Kasper DL, Gorbach SL. A review. Lessons from an animal model of intra-abdominal sepsis. Arch. Surg. 113(7), 853–857 (1978).
    • 34. Stevens DL, Bryant AE. Necrotizing soft-tissue infections. N. Engl. J. Med. 377(23), 2253–2265 (2017).
    • 35. Bohnen JM, Marshall JC, Fry DE, Johnson SB, Solomkin JS. Clinical and scientific importance of source control in abdominal infections: summary of a symposium. Can. J. Surg. 42(2), 122–126 (1999).
    • 36. Schein M, Marshall J. Source control for surgical infections. World J. Surg. 28(7), 638–645 (2004).
    • 37. Heseltine PN, Yellin AE, Appleman MD et al. Perforated and gangrenous appendicitis: an analysis of antibiotic failures. J. Infect. Dis. 148(2), 322–329 (1983).
    • 38. Yellin AE, Heseltine PN, Berne TV et al. The role of Pseudomonas species in patients treated with ampicillin and Sulbactam for gangrenous and perforated appendicitis. Surg. Ggynecol. Obstet. 161(4), 303–307 (1985).
    • 39. Andersen BR, Kallehave FL, Andersen HK. Antibiotics versus placebo for prevention of postoperative infection after appendicectomy. Cochrane Database Syst. Rev. (3), Cd001439 (2005).
    • 40. Snydman DR, McDermott LA, Jacobus NV, Kerstein K, Grossman TH, Sutcliffe JA. Evaluation of the in vitro activity of eravacycline against a broad spectrum of recent clinical anaerobic isolates. Antimicrob. Agents Chemother. 62(5), pii:e02206-17 (2018). • Presents evidence on the in vitro activity of eravacycline.
    • 41. Zhanel GG, Baxter MR, Adam HJ, Sutcliffe J, Karlowsky JA. In vitro activity of eravacycline against 2213 Gram-negative and 2424 Gram-positive bacterial pathogens isolated in Canadian hospital laboratories: CANWARD surveillance study 2014–2015. Diagn. Microbiol. Infect. Dis. 91(1), 55–62 (2018).• Presents evidence on the in vitro activity of eravacycline.
    • 42. Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 60(6), 3840–3844 (2016).•• Presents evidence on the in vitro activity of eravacycline against carbapenem-resistant Enterobacteriaceaes.
    • 43. van Harten RM, Willems RJL, Martin NI, Hendrickx APA. Multidrug-resistant enterococcal infections: new compounds, novel antimicrobial therapies? Trends Microbiol. 25(6), 467–479 (2017).
    • 44. Goldstein EJC, Citron DM, Tyrrell KL. In vitro activity of eravacycline and comparator antimicrobials against 143 recent strains of Bacteroides and Parabacteroides species. Anaerobe 52, 122–124 (2018).
    • 45. Seifert H, Stefanik D, Sutcliffe JA, Higgins PG. In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii. Int. J. Antimicrob. Agents 51(1), 62–64 (2018).
    • 46. Grossman TH, Starosta AL, Fyfe C et al. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob. Agents Chemother. 56(5), 2559–2564 (2012).
    • 47. Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, Quale J. Activity of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including multidrug-resistant isolates, from New York City. Antimicrob. Agents Chemother. 59(3), 1802–1805 (2015).
    • 48. Zhang Y, Lin X, Bush K. In vitro susceptibility of β-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE) to eravacycline. J. Antibiot. 69(8), 600–604 (2016).
    • 49. Zhang F, Bai B, Xu GJ et al. Eravacycline activity against clinical S. aureus isolates from China: in vitro activity, MLST profiles and heteroresistance. BMC Microbiol. 18(1), 211 (2018).
    • 50. Solomkin J, Hershberger E, Miller B et al. Ceftolozane/tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, Phase III trial (ASPECT-cIAI). Clin. Infect. Dis. 60(10), 1462–1471 (2015).
    • 51. Mazuski JE, Gasink LB, Armstrong J et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, Phase III program. Clin. Infect. Dis. 62(11), 1380–1389 (2016).
    • 52. Solomkin JS, Ramesh MK, Cesnauskas G et al. Phase II, randomized, double-blind study of the efficacy and safety of two dose regimens of eravacycline versus ertapenem for adult community-acquired complicated intra-abdominal infections. Antimicrob. Agents Chemother. 58(4), 1847–1854 (2014).•• Phase III trial demonstrates noninferiority of eravacycline to ertapenem.
    • 53. Solomkin J, Evans D, Slepavicius A et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating Gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 152(3), 224–232 (2017).•• Phase III trial demonstrates noninferiority of eravacycline to meropenem.
    • 54. Newman JV, Zhou J, Izmailyan S, Tsai L. Randomized, double-blind, placebo-controlled studies of the safety and pharmacokinetics of single and multiple ascending doses of eravacycline. Antimicrob. Agents Chemother. 62(11), pii:e01174-18 (2018).
    • 55. Meagher AK, Ambrose PG, Grasela TH, Ellis-Grosse EJ. The pharmacokinetic and pharmacodynamic profile of tigecycline. Clin. Infect. Dis. 41(Suppl. 5), S333–S340 (2005).
    • 56. Babinchak T, Ellis-Grosse E, Dartois N, Rose GM, Loh E. The efficacy and safety of tigecycline for the treatment of complicated intra-abdominal infections: analysis of pooled clinical trial data. Clin. Infect. Dis. 41(Suppl. 5), S354–S367 (2005).
    • 57. Lauf L, Ozsvar Z, Mitha I et al. Phase III study comparing tigecycline and ertapenem in patients with diabetic foot infections with and without osteomyelitis. Diagn. Microbiol. Infect. Dis. 78(4), 469–480 (2014).
    • 58. Matthews P, Alpert M, Rahav G et al. A randomized trial of tigecycline versus ampicillin-sulbactam or amoxicillin-clavulanate for the treatment of complicated skin and skin structure infections. BMC Infect. Dis. 12, 297 (2012).
    • 59. O'Riordan W, Mehra P, Manos P, Kingsley J, Lawrence L, Cammarata S. A randomized Phase II study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int. J. Infect. Dis. 30, 67–73 (2015).
    • 60. Towfigh S, Pasternak J, Poirier A, Leister H, Babinchak T. A multicentre, open-label, randomized comparative study of tigecycline versus ceftriaxone sodium plus metronidazole for the treatment of hospitalized subjects with complicated intra-abdominal infections. Clin. Microbiol. Infect. 16(8), 1274–1281 (2010).
    • 61. Harris PNA, Tambyah PA, Lye DC et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E. coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA 320(10), 984–994 (2018).
    • 62. Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J. Antimicrob. Chemother. 67(12), 2793–2803 (2012).
    • 63. Tamma PD, Han JH, Rock C et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum β-lactamase bacteremia. Clin. Infect. Dis. 60(9), 1319–1325 (2015).
    • 64. McLaughlin M, Advincula MR, Malczynski M, Qi C, Bolon M, Scheetz MH. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob. Agents Chemother. 57(10), 5131–5133 (2013).
    • 65. Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature 543(7643), 15 (2017).
    • 66. Kelly AM, Mathema B, Larson EL. Carbapenem-resistant Enterobacteriaceae in the community: a scoping review. Int. J. Antimicrob. Agents 50(2), 127–134 (2017).
    • 67. Bush K. Game changers: new β-lactamase inhibitor combinations targeting antibiotic resistance in Gram-negative bacteria. ACS Infect. Dis. 4(2), 84–87 (2018).
    • 68. Pogue JM, Bonomo RA, Kaye KS. Ceftazidime/avibactam, meropenem/vaborbactam or both? Clinical and formulary considerations. Clin. Infect. Dis. 68(3), 519–524 (2018).
    • 69. Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin. Microbiol. Infect. 23(10), 704–712 (2017).
    • 70. Nelson K, Hemarajata P, Sun D et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob. Agents Chemother. 61(10), pii:e00989-17 (2017).
    • 71. Rex JH, Talbot GH, Goldberger MJ et al. Progress in the fight against multidrug-resistant bacteria 2005–2016: modern noninferiority trial designs enable antibiotic development in advance of epidemic bacterial resistance. Clin. Infect. Dis. 65(1), 141–146 (2017).
    • 72. Boucher HW, Ambrose PG, Chambers HF et al. White paper: developing antimicrobial drugs for resistant pathogens, narrow-spectrum indications, and unmet needs. J. Infect. Dis. 216(2), 228–236 (2017).
    • 73. Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect. Dis. Ther. 7(4), 439–455 (2018).
    • 74. Ben-David D, Kordevani R, Keller N et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin. Microbiol. Infect. 18(1), 54–60 (2012).
    • 75. Dubinsky-Pertzov B, Temkin E, Harbarth S et al. Carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae and the risk of surgical site infection after colorectal surgery: a prospective cohort study. Clin. Infect. Dis. 68(10), 1699–1704 (2018).
    • 76. US FDA. Guidance for industry: complicated intra-abdominal infections: developing drugs for treatment (2018). https://www.fda.gov/regulatory-information/search-fda-guidance-documents/complicated-intra-abdominal-infections-developing-drugs-treatment
    • 77. Solomkin JS, Yellin AE, Rotstein OD et al. Ertapenem versus piperacillin/tazobactam in the treatment of complicated intraabdominal infections: results of a double-blind, randomized comparative Phase III trial. Ann. Surg. 237(2), 235–245 (2003).
    • 78. Malangoni MA, Song J, Herrington J, Choudhri S, Pertel P. Randomized controlled trial of moxifloxacin compared with piperacillin-tazobactam and amoxicillin-clavulanate for the treatment of complicated intra-abdominal infections. Ann. Surg. 244(2), 204–211 (2006).
    • 79. Wong D, Spellberg B. Leveraging antimicrobial stewardship into improving rates of carbapenem-resistant Enterobacteriaceae. Virulence 8(4), 383–390 (2017).
    • 80. Wilson APR. Sparing carbapenem usage. J. Antimicrob. Chemother. 72(9), 2410–2417 (2017).