We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Cell-to-cell phenotypic heterogeneity in pneumococcal pathogenesis

    Manalee Vishnu Surve

    Bacterial Pathogenesis Lab, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India

    &
    Anirban Banerjee

    *Author for correspondence: Tel.: +91 222 576 7794; Fax: +91 222 572 3480;

    E-mail Address: abanerjee@iitb.ac.in

    Bacterial Pathogenesis Lab, Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India

    Published Online:https://doi.org/10.2217/fmb-2019-0096
    Free first page

    References

    • 1. Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb. Perspect. Med. 3(7), a010215 (2013).
    • 2. Van der Poll T, Opal SM. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374(9700), 1543–1556 (2009).
    • 3. Keller LE, Robinson DA, McDaniel LS. Nonencapsulated Streptococcus pneumoniae: emergence and pathogenesis. MBio 7(2), e01792 (2016).
    • 4. Weinberger DM, Harboe ZB, Shapiro ED. Developing better pneumococcal vaccines for adults. JAMA Intern. Med. 177(3), 303–304 (2017).
    • 5. Kim L, McGee L, Tomczyk S, Beall B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin. Microbiol. Rev. 29(3), 525–552 (2016).
    • 6. Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat. Rev. Microbiol. 16(6), 355–367 (2018).
    • 7. Chacon-Cruz E, Martinez-Longoria CA, Llausas-Magana E et al. Neisseria meningitidis and Streptococcus pneumoniae as leading causes of pediatric bacterial meningitis in nine Mexican hospitals following 3 years of active surveillance. Ther. Adv. Vaccines 4(1–2), 15–19 (2016).
    • 8. Ring A, Weiser JN, Tuomanen EI. Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J. Clin. Invest. 102(2), 347–360 (1998).
    • 9. Iovino F, Seinen J, Henriques-Normark B, van Dijl JM. How does Streptococcus pneumoniae invade the brain? Trends Microbiol. 24(4), 307–315 (2016).
    • 10. Surve MV, Bhutda S, Datey A et al. Heterogeneity in pneumolysin expression governs the fate of Streptococcus pneumoniae during blood–brain barrier trafficking. PLoS Pathog. 14(7), e1007168 (2018).
    • 11. Paz I, Sachse M, Dupont N, Mounier J et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol. 12(4), 530–544 (2010).
    • 12. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482(7385), 414–418 (2012).
    • 13. Perrin AJ, Jiang X, Birmingham CL, So NS, Brumell JH. Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system. Curr. Biol. 14(9), 806–811 (2004).
    • 14. Marriott HM, Mitchell TJ, Dockrell DH. Pneumolysin: a double-edged sword during the host–pathogen interaction. Curr. Mol. Med. 8(6), 497–509 (2008).
    • 15. Shak JR, Ludewick HP, Howery KE et al. Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms. mBio 4(5), e00655–e00613 (2013).
    • 16. Zafar MA, Wang Y, Hamaguchi S, Weiser JN. Host-to-host transmission of Streptococcus pneumoniae is driven by its inflammatory toxin, pneumolysin. Cell Host Microbe 21(1),73–83 (2017).
    • 17. Hirst RA, Kadioglu A, O'Callaghan C, Andrew PW. The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin. Exp. Immunol. 138(2), 195–201 (2004).
    • 18. Harvey RM, Ogunniyi AD, Chen AY, Paton JC. Pneumolysin with low hemolytic activity confers an early growth advantage to Streptococcus pneumoniae in the blood. Infect. Immun. 79(10), 4122–4130 (2011).
    • 19. Berry AM, Yother J, Briles DE, Hansman D, Paton JC. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect. Immun. 57(7), 2037–2042 (1989).
    • 20. Kadioglu A, Kadioglu A, Taylor S et al. Upper and lower respiratory tract infection by Streptococcus pneumoniae is affected by pneumolysin deficiency and differences in capsule type. Infect. Immun. 70(6), 2886–2890 (2002).
    • 21. Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen EI. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 190(9), 1661–1669 (2004).
    • 22. Shenoy AT, Brissac T, Gilley RP et al. Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing. PLoS Pathog. 13(8), e1006582 (2017).
    • 23. Avraham R, Haseley N, Brown D et al. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell 162(6), 1309–1321 (2015).