We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Synergistic action of substituted indole derivatives and clinically used antibiotics against drug-resistant bacteria

    Danielle N Turner

    Departments of Chemistry and Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA

    ,
    Leslie Edwards

    Departments of Chemistry and Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA

    ,
    Alexander Kornienko

    Departments of Chemistry and Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA

    Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA

    ,
    Liliya V Frolova

    Departments of Chemistry and Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA

    &
    Snezna Rogelj

    *Author for correspondence:

    E-mail Address: snezna.rogelj@nmt.edu

    Departments of Chemistry and Biology, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801, USA

    Published Online:https://doi.org/10.2217/fmb-2019-0094

    Aim: The current report describes the discovery of indole derivatives that synergize with standard antibiotics. Materials & methods: The antibacterial activities were determined using an optimized time–kill method, while viability of mammalian cells was assessed using the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: The synergy is observed with methicillin- and vancomycin-resistant Staphylococcus aureus bacterial strains, against which the standard antibiotics show no activities of their own. Our indole derivatives in combination with antibiotics lack toxicity toward mammalian cells, do not promote the evolution of resistance of S. aureus in comparison to clinically established antibiotics, and likely work by permeabilizing bacterial cell membranes. Conclusion: The above-mentioned findings demonstrate the potential clinical applications of our indole derivatives.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect. Ecol. Epidemiol. 5(1), 28564 (2015). •• Describes the mechanisms for acquisition of resistance of human pathogens.
    • 2. Berendonk TU, Manaia CM, Merlin C et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13(5), 310–317 (2015).
    • 3. Holmes AH, Moore LS, Sundsfjord A et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387(10014), 176–187 (2016).
    • 4. McEachran AD, Blackwell BR, Hanson JD et al. Antibiotics, bacteria and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ. Health Perspect. 123(4), 337–343 (2015).
    • 5. Medina E, Pieper DH. Tackling threats and future problems of multidrug-resistant bacteria. In: How to Overcome the Antibiotic Crisis (Volume 398). Stadler MDersch P (Eds). Springer, Switzerland, 3–33 (2016).
    • 6. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13(1), 42–51 (2015).
    • 7. Vlahović-Palčevski V. Antimicrobial stewardship: what to tell the patients and the general public. In: Antimicrobial Stewardship. Academic Press, London, UK, 175–184 (2017).
    • 8. Purrello SM, Garau J, Giamarellos E et al. Methicillin-resistant Staphylococcus aureus infections: a review of the currently available treatment options. J. Glob. Antimicrob. Resist. 7, 178–186 (2016).
    • 9. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus 9(6), e1403 (2017).
    • 10. Weiner-Lastinger LM, Abner S, Edwards JR et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 41(1), 1–18 (2019).
    • 11. Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther. 12(10), 1221–1236 (2014).
    • 12. Smith JR, Barber KE, Raut A, Aboutaleb M, Sakoulas G, Rybak MJ. β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J. Antimicrob. Chemother. 70(6), 1738–1743 (2015). • Is an excellent source of information on vancomycin-resistant Enterococci.
    • 13. Lee J, Atilla C, Cirillo SL, Cirillo JD, Wood TK. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotechnol. 2(1), 75–90 (2009).
    • 14. Lee JH, Cho HS, Kim Y et al. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl. Microbiol. Biotechnol. 97(10), 4543–4552 (2013).
    • 15. Al-Qawasmeh RA, Huesca M, Nedunuri V et al. Potent antimicrobial activity of 3-(4,5-diaryl-1H-imidazol-2-yl)-1H-indole derivatives against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. Lett. 20(12), 3518–3520 (2010).
    • 16. Handzlik J, Matys A, Kiec-Kononowicz K. Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of Gram-positive bacteria S. aureus. Antibiotics 2(1), 28–45 (2013).
    • 17. Ozturk A, Abdullah MI. Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Sci. Tot. Envir. 358(1–3), 137–142 (2006).
    • 18. Seth D, Hayden K, Malik I et al. Unprecedented C-2 arylation of indole with diazonium salts: syntheses of 2,3-disubstituted indoles and their antimicrobial activity. Bioorg. Med. Chem. Lett. 21(16), 4720–4723 (2011). • Describes the synthesis of compounds tested in the current work.
    • 19. Gonzales RR, Pesesky MW, Bouley R et al. Synergistic, collaterally sensitive -lactam combinations suppress resistance in MRSA. Nat. Chem. Biol. 11(11), 855–861 (2015).
    • 20. Nair DR, Monteiro JM, Memmi G et al. Characterization of a novel small molecule that potentiates β-lactam activity against Gram-positive and Gram-negative pathogens. Antimicrob. Agents Chemother. 59(4), 1876–1885 (2015). •• Serves as an excellent example of antibiotic potentiation with a small molecule.
    • 21. Podoll JD, Liu Y, Chang L, Walls S, Wang W, Wang X. Bio-inspired synthesis yields a tricyclic indoline that selectively resensitizes methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. Proc. Natl Acad. Sci. USA 110(39), 15573–15578 (2013).
    • 22. Ling LL, Schneider T, Peoples AJ et al. A new antibiotic kills pathogens without detectable resistance. Nature 517(7535), 455–459 (2015). •• Describes the procedures for testing new antibiotics for the development of resistance.
    • 23. Joshi S, Mumtaz S, Singh J, Pasha S, Mukhopadhyay K. Novel miniature membrane active lipopeptidomimetics against planktonic and biofilm embedded methicillin-resistant Staphylococcus aureus. Sci. Rep. 8, 1021 (2018).
    • 24. Saiman L, Chen Y, San Gabriel P, Knirsch C. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother. 46(4), 1105–1107 (2002).
    • 25. Loewen K, Schreiber Y, Kirlew M, Bocking N, Kelly L. Community-associated methicillin-resistant Staphylococcus aureus infection: literature review and clinical update. Can. Fam. Physician 63(7), 512–520 (2017). • Is an excellent source of information on methicillin-resistant Staphylococcus aureus.
    • 26. WHO. WHO publishes list of bacteria for which new antibiotics are urgently needed (2017). http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en
    • 27. Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 16(6), 541–554 (2010).
    • 28. Yinfeng L, Wang J, Gao H et al. Antimicrobial properties and membrane-active mechanism of a potential -helical antimicrobial derived from cathelicidin PMAP-36. PLoS ONE 9(1), e86364 (2014).
    • 29. Nakamura I, Yamaguchi T, Tsukimori A, Sato A, Fukushima S, Matsumoto T. New options of antibiotic combination therapy for multidrug-resistant Pseudomonas aeruginosa. Eur. J. Clin. Microbol. Inf. Dis. 34(1), 83–87 (2015).
    • 30. Lagerback P, Khine WWT, Giske CG, Tangden T. Evaluation of antibacterial activities of colistin, rifampicin and meropenem combinations against NDM-1-producing Klebsiella pneumoniae in 24 h in vitro time–kill experiments. J. Antimicrob. Chemother. 71(8), 2321–2325 (2016).