We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Biosurfactants of Lactobacillus helveticus for biodiversity inhibit the biofilm formation of Staphylococcus aureus and cell invasion

    Xinpeng Jiang

    Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China

    Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Xin Yan

    Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Shanshan Gu

    Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China

    ,
    Yan Yang

    Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China

    ,
    Lili Zhao

    Heilongjiang Provincial Key Laboratory of Laboratory Animal & Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China

    ,
    Xinmiao He

    Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China

    ,
    Hongyan Chen

    Heilongjiang Provincial Key Laboratory of Laboratory Animal & Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China

    ,
    Junwei Ge

    *Author for correspondence: Tel.: +86 4515 5190 385;

    E-mail Address: gejunwei@neau.edu.cn

    Heilongjiang Key Laboratory for Animal Disease Control & Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China

    &
    Di Liu

    **Author for correspondence:

    E-mail Address: liudi1963@163.com

    Key Laboratory of Combining Farming & Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China

    Published Online:https://doi.org/10.2217/fmb-2018-0354

    Aim: This study aimed to evaluate the differences of biosurfactants produced by two Lactobacillus helveticus strains against the biofilm formation of Staphylococcus aureus in vitro and in vivo. Materials & methods: Scanning electron microscopy, Real time-quantitative PCR (RT-qPCR) and cell assay were used to analyze the inhibiting effect of biosurfactants against biofilm formation. Results & conclusion: Results showed that the biosurfactants have anti-adhesive and inhibiting effects on biofilm formation in vivo and in vitro. The biofilm-formative genes and autoinducer-2 signaling regulated these characteristics, and the biosurfactant L. helveticus 27170 is better than that of 27058. Host cell adhesion and invasion results indicated that the biosurfactants L. helveticus prevented the S. aureus invading the host cell, which may be a new strategy to eliminate biofilms.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Maeda T, Yoshimura T, Garcia-Contreras R, Ogawa HI. Purification and characterization of a serine protease secreted by Brevibacillus sp. KH3 for reducing waste activated sludge and biofilm formation. Bioresour. Technol. 102(22), 10,650–10,656 (2011). • The development of biofilm resistant strains and the development of alternative therapeutic agents.
    • 2. Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol. 8(4), 509–524 (2013).
    • 3. Girard LP, Ceri H, Gibb AP, Olson M, Sepandj F. MIC versus MBEC to determine the antibiotic sensitivity of Staphylococcus aureus in peritoneal dialysis peritonitis. Perit. Dial. Int. 30(6), 652–656 (2010).
    • 4. Howlin RP, Brayford MJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob. Agents Chemother. 59(1), 111–120 (2015).
    • 5. Cao Z, Wang P, Gao X, Shao B, Zhao S, Li Y. Lycopene attenuates aluminum-induced hippocampal lesions by inhibiting oxidative stress-mediated inflammation and apoptosis in the rat. J. Inorg. Biochem. 193, 143–151 (2019).
    • 6. Freitas AI, Lopes N, Oliveira F et al. Comparative analysis between biofilm formation and gene expression in Staphylococcus epidermidis isolates. Future Microbiol. 13, 415–427 (2018).
    • 7. Kiran GS, Priyadharsini S, Sajayan A, Priyadharsini GB, Poulose N, Selvin J. Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry. Front. Microbiol. 8, 1138 (2017).
    • 8. Coronel-Leon J, Marques AM, Bastida J, Manresa A. Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. J. Appl. Microbiol. 120(1), 99–111 (2016).
    • 9. Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N. Biotechnol. 36, 26–36 (2017).
    • 10. Carpino S, Randazzo CL, Pino A et al. Influence of PDO Ragusano cheese biofilm microbiota on flavour compounds formation. Food Microbiol. 61, 126–135 (2017).
    • 11. Rich JO, Leathers TD, Bischoff KM, Anderson AM, Nunnally MS. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation. Bioresour. Technol. 196, 347–354 (2015).
    • 12. Saran S, Mukherjee S, Dalal J, Saxena RK. High production of erythritol from Candida sorbosivorans SSE-24 and its inhibitory effect on biofilm formation of Streptococcus mutans. Bioresour. Technol. 198, 31–38 (2015).
    • 13. Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 13, 915–932 (2018).
    • 14. Rodrigues L, Van Der Mei H, Teixeira JA, Oliveira R. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl. Microbiol. Biotechnol. 66(3), 306–311 (2004).
    • 15. Rodrigues L, Banat IM, Teixeira J, Oliveira R. Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J. Biomed. Mater. Res. Part B Appl. Biomater. 81(2), 358–370 (2007).
    • 16. Josse J, Laurent F, Diot A. Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms. Front. Microbiol. 8, 2433 (2017).
    • 17. Walencka E, Rozalska S, Sadowska B, Rozalska B. The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol. (Praha) 53(1), 61–66 (2008). • Shows the function of surfactants produced by Lactobacillus acidophilus inhibited the biofilm formation, but not sure about the difference in the same strains.
    • 18. Wiegand S, Dietrich S, Hertel R et al. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation. BMC Genomics 14, 667 (2013).
    • 19. Luis A, Silva F, Sousa S, Duarte AP, Domingues F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 30(1), 69–79 (2014).
    • 20. Xue T, Zhao L, Sun B. LuxS/AI-2 system is involved in antibiotic susceptibility and autolysis in Staphylococcus aureus NCTC 8325. Int. J. Antimicrob. Agents 41(1), 85–89 (2013).
    • 21. Yu D, Zhao L, Xue T, Sun B. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol. 12, 288 (2012). • he anti-adhesive properties of L. acidophilus biosurfactant was used against microorganisms, through the LuxS/AI-2 single sensing decreases biofilm formation.
    • 22. Zhang H, Zhou W, Zhang W et al. Inhibitory effects of citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by food-borne Staphylococcus aureus and Salmonella enteritidis. J. Food Prot. 77(6), 927–933 (2014).
    • 23. Arocho A, Chen B, Ladanyi M, Pan Q. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn. Mol. Pathol. 15(1), 56–61 (2006).
    • 24. Yan X, Gu S, Cui X et al. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb. Pathog. 127, 12–20 (2019). • Purifies some microbes against Staphylococcus aureus biofilm-related infections.
    • 25. Lee JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29(5), 491–499 (2013).
    • 26. Reddinger RM, Luke-Marshall NR, Hakansson AP, Campagnari AA. Host physiologic changes induced by influenza A virus lead to Staphylococcus aureus biofilm dispersion and transition from asymptomatic colonization to invasive disease. MBio 7(4), e01235-16 (2016).
    • 27. Reddinger RM, Luke-Marshall NR, Sauberan SL, Hakansson AP, Campagnari AA. Streptococcus pneumoniae modulates Staphylococcus aureus biofilm dispersion and the transition from colonization to invasive disease. MBio 9(1), e02089-17 (2018).
    • 28. Prabhakara R, Harro JM, Leid JG, Harris M, Shirtliff ME. Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect. Immun. 79(4), 1789–1796 (2011).
    • 29. Prabhakara R, Harro JM, Leid JG, Keegan AD, Prior ML, Shirtliff ME. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect. Immun. 79(12), 5010–5018 (2011).
    • 30. Shokouhfard M, Kermanshahi RK, Shahandashti RV, Feizabadi MM, Teimourian S. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens. Iran J. Basic Med. Sci. 18(10), 1001–1007 (2015). • Uses the anti-adhesive properties of L. acidophilus biosurfactant against microorganisms responsible for infections.
    • 31. Tahmourespour A, Salehi R, Kasra Kermanshahi R. Lactobacillus Acidophilus-derived biosurfactant effect on GTFB and GTFC expression level in Streptococcus Mutans biofilm cells. Braz. J. Microbiol. 42(1), 330–339 (2011).
    • 32. Ciandrini E, Campana R, Casettari L et al. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm. Appl. Microbiol. Biotechnol. 100(15), 6767–6777 (2016). •• Study on the biosurfactants against oral streptococci biofilm infection.
    • 33. Gudina EJ, Rocha V, Teixeira JA, Rodrigues LR. Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett. Appl. Microbiol. 50(4), 419–424 (2010).
    • 34. Madhu AN, Prapulla SG. Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Appl. Biochem. Biotechnol. 172(4), 1777–1789 (2014).
    • 35. Lorena Rodríguez-López MR-F, Xanel Vecino, José Manuel Cruz, Ana Belén Moldes. Biological surfactants vs polysorbates: comparison of their emulsifier and surfactant properties. Tenside Surfact. Det. 55(4), 273–280 (2018).
    • 36. Wen ZT, Liao S, Bitoun JP et al. Streptococcus mutans displays altered stress responses while enhancing biofilm formation by Lactobacillus casei in mixed-species consortium. Front. Cell. Infect. Microbiol. 7, 524 (2017).
    • 37. Ma R, Qiu S, Jiang Q et al. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus. Int. J. Med. Microbiol. 307(4-5), 257–267 (2017).
    • 38. Bao Y, Li Y, Jiang Q et al. Methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) of Staphylococcus aureus is essential for the virulence independent of LuxS/AI-2 system. Int. J. Med. Microbiol. 303(4), 190–200 (2013).
    • 39. Doherty N, Holden MT, Qazi SN, Williams P, Winzer K. Functional analysis of luxS in Staphylococcus aureus reveals a role in metabolism but not quorum sensing. J. Bacteriol. 188(8), 2885–2897 (2006).
    • 40. Reis RS, Pereira AG, Neves BC, Freire DM. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa–a review. Bioresour. Technol. 102(11), 6377–6384 (2011).
    • 41. Das ND, Jung KH, Chai YG. The role of NF-kappaB and H3K27me3 demethylase, Jmjd3, on the anthrax lethal toxin tolerance of RAW 264.7 cells. PLoS ONE 5(3), e9913 (2010).
    • 42. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274(13), 8405–8410 (1999).
    • 43. Harapanahalli AK, Chen Y, Li J, Busscher HJ, Van Der Mei HC. Influence of adhesion force on icaA and cidA gene expression and production of matrix components in Staphylococcus aureus biofilms. Appl. Environ. Microbiol. 81(10), 3369–3378 (2015).
    • 44. Reyes D, Andrey DO, Monod A, Kelley WL, Zhang G, Cheung AL. Coordinated regulation by AgrA, SarA, and SarR to control agr expression in Staphylococcus aureus. J. Bacteriol. 193(21), 6020–6031 (2011). • Uses biofilm-relative genes to study with the biosurfactants.
    • 45. Rice KC, Mann EE, Endres JL et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 104(19), 8113–8118 (2007).
    • 46. Foster TJ, Geoghegan JA, Ganesh VK, Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12(1), 49–62 (2014).
    • 47. Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol. Microbiol. 104(3), 365–376 (2017).
    • 48. Xu F, Ji Q, Zhang J, Huang W, Cao Z, Li Y. AlCl3 inhibits LPS-induced NLRP3 inflammasome activation and IL-1beta production through suppressing NF-kappaB signaling pathway in murine peritoneal macrophages. Chemosphere 209, 972–980 (2018).
    • 49. Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13(1), 16–34 (2000).
    • 50. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274(5294), 1859–1866 (1996).
    • 51. Caiazza NC, O'toole GA. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J. Bacteriol. 185(10), 3214–3217 (2003).
    • 52. Cho HS, Lee JH, Cho MH, Lee J. Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling 31(1), 1–11 (2015).
    • 53. Lee K, Lee JH, Ryu SY, Cho MH, Lee J. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog. Dis. 11(9), 710–717 (2014).
    • 54. Lee JH, Kim YG, Lee K, Kim SC, Lee J. Temperature-dependent control of Staphylococcus aureus biofilms and virulence by thermoresponsive oligo(N-vinylcaprolactam). Biotechnol. Bioeng. 112(4), 716–724 (2015).
    • 55. Vecino X, Rodriguez-Lopez L, Ferreira D, Cruz JM, Moldes AB, Rodrigues LR. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int. J. Biol. Macromol. 109, 971–979 (2018).
    • 56. Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57(4), 609–618 (2006). •• Reviews the importance of biosurfactants in the medicine, especially the research of probiotic inhibition of the biofilm.