We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Performance of the automated multiplex PCR Unyvero implant and tissue infections system in the management of diabetic foot osteomyelitis

    Catherine Dunyach-Remy

    U1047, INSERM, University Montpellier, Department of Microbiology, University Hospital Nimes, Nîmes, France

    Authors contributed equally

    Search for more papers by this author

    ,
    Charlotte Carrere

    U1047, INSERM, University Montpellier, Department of Microbiology, University Hospital Nimes, Nîmes, France

    Authors contributed equally

    Search for more papers by this author

    ,
    Hélène Marchandin

    HydroSciences Montpellier, CNRS, IRD, University Montpellier, Department of Microbiology, University Hospital Nimes, Nîmes, France

    ,
    Sophie Schuldiner

    Department of Diabetology, University Hospital Nîmes, Le Grau du Roi, France

    ,
    Anne-Marie Guedj

    Department of Diabetology, University Hospital Nimes, Nîmes, France

    ,
    Nicolas Cellier

    Department of Orthopedic Surgery, University Hospital Nimes, Nîmes, France

    ,
    Axelle Cadière

    Chrome Unit, EA7352, University Nîmes, Nîmes, France

    ,
    Catherine Lechiche

    Departement of Infectious Diseases, University Hospital Nimes, Nîmes, France

    ,
    Albert Sotto

    U1047, INSERM, Université Montpellier, Departement of Infectious Diseases, University Hospital Nimes, Nîmes, France

    &
    Jean-Philippe Lavigne

    *Author for correspondence: Tel.: +33 466 683 202; Fax: +33 466 684 254;

    E-mail Address: jean.philippe.lavigne@chu-nimes.fr

    U1047, INSERM, University Montpellier, Department of Microbiology, University Hospital Nimes, Nîmes, France

    Published Online:https://doi.org/10.2217/fmb-2018-0213

    Aim: We evaluated the performance of Unyvero implant and tissue infections system (ITI) application (Curetis) to diagnose Diabetic Foot Osteomyelitis (DFOM). Patients & methods: The study was conducted in the Diabetic Foot reference center of Nîmes University Hospital (France) from 1 December 2016 to 31 May 2017. We compared the Unyvero ITI PCR to conventional culture and alternative molecular approaches. Results: A total of 79 patients with DFOM were included: 177 microorganisms were isolated by culture, 146 detected by PCR, resulting in a concordance level of 66.7% (65.0–68.4). Discrepant results were obtained for 45 samples, with 59 microorganisms being detected by PCR only (18 samples) or by culture only (27 samples). Conclusion: Unyvero ITI PCR represents an interesting additional diagnosis solution to manage DFOM.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Uckay I, Gariani K, Dubois-Rerrière V, Suva D, Lipsky BA. Diabetic foot infections: recent literature and cornerstones of management. Curr. Opin. Infect. Dis. 29(2), 145–152 (2016). •• A clear presentation of the problematic of diabetic foot infection and its difficulties in management and treatment.
    • 2 Pereira SG, Moura J, Carvalho E, Empadinhas N. Microbiota of chronic diabetic wounds: ecology, impact, and potential for innovative treatment strategies. Front. Microbiol. 8, 1791 (2017).
    • 3 Petrakis I, Kyriopoulos IJ, Ginis A, Athanasakis K. Losing a foot versus losing a dollar: a systematic review of cost studies in diabetic foot complications. Expert Rev. Pharmacoecon. Outcomes Res. 17(2), 165–180 (2017). • A review on the direct and indirect costs of diabetic foot infections.
    • 4 Ndosi M, Wright-Hughes A, Brown S et al. Prognosis of the infected diabetic foot ulcer: a 12-month prospective observational study. Diabet. Med. 35(1), 78–88 (2018).
    • 5 Senneville E, Robineau O. Treatment options for diabetic foot osteomyelitis. Expert Opin. Pharmacother. 18(8), 759–765 (2017).
    • 6 Bakker K, Apelqvist J, Lipsky BA, Van Netten JJ; International Working Group on the Diabetic Foot. The 2015 IWGDF guidance documents on prevention and management of foot problems in diabetes: development of an evidence-based global consensus. Diabetes Metab. Res. Rev. 32(S1), 2–6 (2016).
    • 7 Lipsky BA, Peters EJ, Senneville E et al. Expert opinion on the management of infections in the diabetic foot. Diabetes Metab. Res. Rev. 28(S1), 163–178 (2012).
    • 8 Fosse-Edorh S, Mandereau-Bruno L, Regnault N. Le poids des complications liées au diabète en France en 2013. Synthèse et perspectives. Bull. Epidemiol. Hebd. 34–35, 619–625 (2015).
    • 9 Abdel Razek A, Samir S. Diagnostic performance of diffusion-weighted MR imaging in differentiation of diabetic osteoarthropathy and osteomyelitis in diabetic foot. Eur. J. Radiol. 89, 221–225 (2017).
    • 10 Lauri C, Tamminga M, Glaudemans AWJM et al. Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care 40(8), 1111–1120 (2017). • This meta-analysis evaluates the performance of the different imaging tools used in the diagnosis of diabetic foot osteomyelitis.
    • 11 van Asten SA, La Fontaine J, Peters EJ, Bhavan K, Kim PJ, Lavery LA. The microbiome of diabetic foot osteomyelitis. Eur. J. Clin. Microbiol. Infect. Dis. 35(2), 293–298 (2016).
    • 12 Boulton AJ, Kirsner RS, Vileikyte L. Clinical practice. Neuropathic diabetic foot ulcers. N. Engl. J. Med. 351(1), 48–55 (2004).
    • 13 Lavery LA, Fontaine JL, Bhavan K, Kim PJ, Williams JR, Hunt NA. Risk factors for methicillin-resistant Staphylococcus aureus in diabetic foot infections. Diabet. Foot Ankle 5, 23575 (2014).
    • 14 Lavigne JP, Sotto A. Microbial management of diabetic foot osteomyelitis. Future Microbiol. 12, 1243–1246 (2017).
    • 15 Lavigne JP, Sotto A, Dunyach-Remy C, Lipsky BA. New molecular techniques to study the skin microbiota of diabetic foot ulcers. Adv. Wound Care 4(1), 38–49 (2015).
    • 16 Lipsky BA, Aragón-Sánchez J, Diggle M et al. IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes Metab. Res. Rev. 32(S1), 45–74 (2016). •• This publication provides the international guidelines to manage diabetic foot.
    • 17 Senneville E, Melliez H, Beltrand E et al. Culture of percutaneous bone biopsy specimens for diagnosis of diabetic foot osteomyelitis: concordance with ulcer swab cultures. Clin. Infect. Dis. 42(1), 57–62 (2006). • This publication demonstrates the need to use bone biopsy in the documentation of diabetic foot osteomyelitis.
    • 18 Dryden M, Lavigne JP. Diabetic foot infection. In: EMCM: European Manuel of Clinical Microbiology. (1st Edition). Kahlmeter G, Cornaglia G, Courcol R, Herrmann JL (Eds). ESCMID SFM, Paris, France 235–240 (2012).
    • 19 Gouvea MIS, Joao EC, Teixeira MLB et al. Accuracy of a rapid real-time polymerase chain reaction assay for diagnosis of group B Streptococcus colonization in a cohort of HIV-infected pregnant women. J. Matern. Fetal Neonatal Med. 30(9), 1096–1101 (2017).
    • 20 Djahmi N, Boutet-Dubois A, Nedjai S, Dekhil M, Sotto A, Lavigne JP. Molecular epidemiology of Enterococcus sp. isolated in a university hospital in Algeria. Scand. J. Infect. Dis. 44(9), 656–662 (2012).
    • 21 Drancourt M, Raoult D. rpoB gene sequence-based identification of Staphylococcus species. J. Clin. Microbiol. 40(4), 1333–1338 (2002).
    • 22 Li X, Xing J, Li B, Wang P, Liu J. Use of tuf as a target for sequence-based identification of Gram-positive cocci of the genus Enterococcus, Streptococcus, coagulase-negative Staphylococcus, and Lactococcus. Ann. Clin. Microbiol. Antimicrob. 11, 31 (2012).
    • 23 Li W, Han K, Yu P, Ma C, Wu X, Xu J. Nested PCR-denaturing gradient gel electrophoresis analysis of human skin microbial diversity with age. Microbiol. Res. 169(9–10), 686–692 (2014).
    • 24 Dunyach C, Bertout S, Phelipeau C, Drakulovski P, Reynes J, Mallié M. Detection and identification of Candida spp. in human serum by LightCycler real-time polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 60(3), 263–271 (2008).
    • 25 Dunyach-Remy C, Cadière A, Richard JL et al. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE): a promising tool to diagnose bacterial infections in diabetic foot ulcers. Diabet. Metab. 40(6), 476–480 (2014).
    • 26 Pitout JD, Hanson ND, Church DL, Laupland KB. Population-based laboratory surveillance for Escherichia coli-producing extended-spectrum beta-lactamases: importance of community isolates with blaCTX-M genes. Clin. Infect. Dis. 38(12), 1736–1741 (2004).
    • 27 Kim J, Lim YM, Jeong YS, Seol SY. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14 and CTX-M-9 extended-spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob. Agents Chemother. 49(4), 1572–1575 (2005).
    • 28 Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 70(1), 119–123 (2011).
    • 29 Woodford N, Ellington MJ, Coelho JM et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 27(4), 351–353 (2006).
    • 30 Boye K, Bartels MD, Andersen IS, Møller JA, Westh H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I–V. Clin. Microbiol. Infect. 13(7), 725–727 (2007).
    • 31 James GA, Swogger E, Wolcott R et al. Biofilms in chronic wounds. Wound Repair Regen. 16(1), 37–44 (2008).
    • 32 Senneville E, Morant H, Descamps D et al. Needle puncture and transcutaneous bone biopsy cultures are inconsistent in patients with diabetes and suspected osteomyelitis of the foot. Clin. Infect. Dis. 48(7), 888–893 (2009).
    • 33 Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS ONE 3, e3326 (2008).
    • 34 Hatipoglu M, Mutluoglu M, Turhan V, Uzun G, Lipsky BA; Turk-DAY Study Group. Causative pathogens and antibiotic resistance in diabetic foot infections: a prospective multi-center study. J. Diabetes Complicat. 30(5), 910–916 (2016).
    • 35 Dunyach-Remy C, Ngba Essebe C, Sotto A, Lavigne JP. Staphylococcus aureus toxins and diabetic foot ulcers: Role in pathogenesis and interest in diagnosis. Toxins 8, pii:E209 (2016). • An interesting review on the pathogenicity of Staphylococcus aureus, the main pathogen isolated from diabetic foot infection.
    • 36 Levy PY, Fournier PE, Fenollar F, Raoult D. Systematic PCR detection in culture-negative osteoarticular infections. Am. J. Med. 126(12), 1143.e25–1143.e33 (2013).
    • 37 Stappers MH, Hagen F, Reimnitz P, Mouton JW, Meis JF, Gyssens IC. Bacteroides fragilis in biopsies of patients with major abscesses and diabetic foot infections: direct molecular versus culture-based detection. Diagn. Microbiol. Infect. Dis. 85(2), 263–265 (2016).
    • 38 Charles PG, Uçkay I, Kressmann B, Emonet S, Lipsky BA. The role of anaerobes in diabetic foot infections. Anaerobe 34, 8–13 (2015). • A noteworthy review on anaerobes, real pathogens involved in deep diabetic foot infections frequently ignored due to absence of adapted transport media or culture media.
    • 39 Citron DM, Goldstein EJ, Merriam CV, Lipsky BA, Abramson MA. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 45(9), 2819–2828 (2007).
    • 40 Abdulrazak A, Bitar ZI, Al-Shamali AA, Mobasher LA. Bacteriological study of diabetic foot infections. J. Diabetes Complicat. 19(3), 138–141 (2005).
    • 41 Quénard F, Seng P, Lagier JC, Fenollar F, Stein A. Prosthetic joint infection caused by Granulicatella adiacens: a case series and review of literature. BMC Musculoskelet. Disord. 18(1), 276 (2017).
    • 42 Jones BM, Hersey RM, Trestman IJ, Bland CM. Successful treatment of a penicillin-intermediate and ceftriaxone-resistant Granulicatella adiacens presumed prosthetic valve endocarditis with vancomycin. Int. J. Antimicrob. Agents 51(3), 508–510 (2018).
    • 43 Borde JP, Häcker GA, Guschl S et al. Diagnosis of prosthetic joint infections using UMD-Universal Kit and the automated multiplex-PCR Unyvero i60 ITI® cartridge system: a pilot study. Infection 43(5), 551–560 (2015).
    • 44 Hischebeth GT, Randau TM, Buhr JK et al. Unyvero i60 implant and tissue infection (ITI) multiplex PCR system in diagnosing periprosthetic joint infection. J. Microbiol. Methods 121, 27–32 (2016).
    • 45 Malandain D, Bémer P, Leroy AG et al. Assessment of the automated multiplex-PCR Unyvero i60 ITI® cartridge system to diagnose prosthetic joint infection: a multicentre study. Clin. Microbiol. Infect. 24(1), 83.e1–83.e6 (2018). • The most interesting study on the performance and the limits of the Unyvero implant and tissue infections system used in the diagnosis of osteoarticular infections.
    • 46 Villa F, Toscano M, De Vecchi E, Bortolin M, Drago L. Reliability of a multiplex PCR system for diagnosis of early and late prosthetic joint infections before and after broth enrichment. Int. J. Med. Microbiol. 307(6), 363–370 (2017).