We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence

    Anne E Robinson

    Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA

    ,
    James R Heffernan

    Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA

    &
    Jeffrey P Henderson

    *Author for correspondence:

    E-mail Address: hendersonj@wustl.edu

    Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA

    Published Online:https://doi.org/10.2217/fmb-2017-0295

    The role of iron as a critical nutrient in pathogenic bacteria is widely regarded as having driven selection for iron acquisition systems among uropathogenic Escherichia coli (UPEC) isolates. Carriage of multiple transition metal acquisition systems in UPEC suggests that the human urinary tract manipulates metal-ion availability in many ways to resist infection. For siderophore systems in particular, recent studies have identified new roles for siderophore copper binding as well as production of siderophore-like inhibitors of iron uptake by other, competing bacterial species. Among these is a process of nutritional passivation of metal ions, in which uropathogens access these vital nutrients while simultaneously protecting themselves from their toxic potential. Here, we review these new findings within the current understanding of UPEC transition metal acquisition.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Gupta K, Grigoryan L, Trautner B. Urinary tract infection. Ann. Intern. Med. 167(7), ITC49–ITC64 (2017).
    • 2 Stamey TA. Recurrent urinary tract infections in female patients: an overview of management and treatment [with panel discussion]. Rev. Infect. Dis. 9, S195–S210 (1987).
    • 3 Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA 103(38), 14170–14175 (2006).
    • 4 Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4(12), e329 (2007).
    • 5 Caspi R, Altman T, Dreher K et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 40, D742–D753 (2012).
    • 6 Bachmann BJ. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol. Rev. 36(4), 525–557 (1972).
    • 7 Johnson JR, Moseley SL, Roberts PL, Stamm WE. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect. Immun. 56(2), 405–412 (1988).
    • 8 Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int. J. Med. Microbiol. 295(6), 383–404 (2005).
    • 9 Parker KS, Wilson JD, Marschall J, Mucha PJ, Henderson JP. Network analysis reveals sex- and antibiotic resistance-associated antivirulence targets in clinical uropathogens. ACS Infect. Dis. 1(11), 523–532 (2015). • Uses contemporary network analyses to identify common virulence factor combinations in Escherichia coli from a large clinical cohort. Siderophore system combinations were representative of the resulting groups.
    • 10 Brumbaugh AR, Smith SN, Subashchandrabose S et al. Blocking yersiniabactin import attenuates extraintestinal pathogenic Escherichia coli in cystitis and pyelonephritis and represents a novel target to prevent urinary tract infection. Infect. Immun. 83(4), 1443–1450 (2015).
    • 11 Subashchandrabose S, Hazen TH, Brumbaugh AR et al. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc. Natl Acad. Sci. USA 111(51), 18327–18332 (2014).
    • 12 Conover MS, Hadjifrangiskou M, Palermo JJ, Hibbing ME, Dodson KW, Hultgren SJ. Metabolic requirements of Escherichia coli in intracellular bacterial communities during urinary tract infection pathogenesis. mBio 7(2), e00104–e00116 (2016).
    • 13 Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13(8), 1205–1218 (2008).
    • 14 Berg JM. Metal ions in proteins: structural and functional roles. Cold Spring Harb. Symp. Quant. Biol. 52, 579–585 (1987).
    • 15 Ballantine SP, Boxer DH. Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J. Bacteriol. 163(2), 454–459 (1985).
    • 16 Alteri CJ, Smith SN, Mobley HLT. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 5(5), e1000448 (2009).
    • 17 Winterbourn CC, Kettle AJ, Hampton MB. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85(1), 765–792 (2016).
    • 18 Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77(1), 755–776 (2008).
    • 19 Anjem A, Imlay JA. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J. Biol. Chem. 287(19), 15544–15556 (2012).
    • 20 Anjem A, Varghese S, Imlay JA. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 72(4), 844–858 (2009).
    • 21 Rothen A. Ferritin and apoferritin in the ultracentrifuge: studies on the relationship of ferritin and apoferritin; precision measurements of the rates of sedimentation of apoferritin. J. Biol. Chem. 152(3), 679–693 (1944).
    • 22 Shields-Cutler RR, Crowley JR, Hung CS et al. Human urinary composition controls antibacterial activity of siderocalin. J. Biol. Chem. 290(26), 15949–15960 (2015). •• Identifies a new mechanism of nutritional immunity in the presence of human urine that is counteracted by uropathogenic Escherichia coli (UPEC) siderophore expression.
    • 23 Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22(1), 439–458 (2002).
    • 24 Puig S, Thiele DJ. Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 6(2), 171–180 (2002).
    • 25 Jeong J, Eide DJ. The SLC39 family of zinc transporters. Mol. Aspects Med. 34(2–3), 612–619 (2013).
    • 26 Palmiter RD, Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflügers Arch. 447(5), 744–751 (2004).
    • 27 Wellenreuther G, Cianci M, Tucoulou R, Meyer-Klaucke W, Haase H. The ligand environment of zinc stored in vesicles. Biochem. Biophys. Res. Commun. 380(1), 198–203 (2009).
    • 28 Palmiter RD. The elusive function of metallothioneins. Proc. Natl Acad. Sci. USA 95(15), 8428–8430 (1998).
    • 29 Sieniawska CE, Jung LC, Olufadi R, Walker V. Twenty-four hour urinary trace element excretion: reference intervals and interpretive issues. Ann. Clin. Biochem. 49(4), 341–351 (2012).
    • 30 Hyre AN, Kavanagh K, Kock ND, Donati GL, Subashchandrabose S. Copper is a host effector mobilized to urine during urinary tract infection to impair bacterial colonization. Infect. Immun. 85(3), pii: e01041–16 (2017).
    • 31 Meyer-Siegler KL, Iczkowski KA, Vera PL. Macrophage migration inhibitory factor is increased in the urine of patients with urinary tract infection: macrophage migration inhibitory factor–protein complexes in human urine. J. Urol. 175(4), 1523–1528 (2006).
    • 32 Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102(3), 783–788 (2003).
    • 33 Arezes J, Jung G, Gabayan V et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe 17(1), 47–57 (2015).
    • 34 Wessling-Resnick M. Nramp1 and other transporters involved in metal withholding during infection. J. Biol. Chem. 290(31), 18984–18990 (2015).
    • 35 Pan Y, Sonn GA, Sin MLY et al. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens. Bioelectron. 26(2), 649–654 (2010).
    • 36 Wally J, Buchanan SK. A structural comparison of human serum transferrin and human lactoferrin. Biometals 20(3), 249 (2007).
    • 37 Reyes L, Alvarez S, Allam A, Reinhard M, Brown MB. Complicated urinary tract infection is associated with uroepithelial expression of proinflammatory protein S100A8. Infect. Immun. 77(10), 4265–4274 (2009).
    • 38 Corbin BD, Seeley EH, Raab A et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319(5865), 962–965 (2008).
    • 39 Nakashige TG, Zhang B, Krebs C, Nolan EM. Human calprotectin is an iron-sequestering host-defense protein. Nat. Chem. Biol. 11(10), 765–771 (2015).
    • 40 Nakashige TG, Zygiel EM, Drennan CL, Nolan EM. Nickel sequestration by the host-defense protein human calprotectin. J. Am. Chem. Soc. 139(26), 8828–8836 (2017).
    • 41 Paragas N, Kulkarni R, Werth M et al. α-Intercalated cells defend the urinary system from bacterial infection. J. Clin. Invest. 124(7), 2963–2976 (2014).
    • 42 Correnti C, Strong RK. Mammalian siderophores, siderophore-binding lipocalins, and the labile iron pool. J. Biol. Chem. 287(17), 13524–13531 (2012).
    • 43 Reigstad CS, Hultgren SJ, Gordon JI. Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J. Biol. Chem. 282(29), 21259–21267 (2007).
    • 44 Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell. 10(5), 1033–1043 (2002).
    • 45 Flo TH, Smith KD, Sato S et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nat. Cell Biol. 432(7019), 917–921 (2004).
    • 46 Shields-Cutler RR, Crowley JR, Miller CD, Stapleton AE, Cui W, Henderson JP. Human metabolome-derived cofactors are required for the antibacterial activity of siderocalin in urine. J. Biol. Chem. 291(50), 25901–25910 (2016). •• Demonstrates enterobactin production by UPEC in the presence of siderocalin during clinical urinary tract infection. Urinary metabolites are identified that are used by siderocalin to sequester ferric ions.
    • 47 Gilston BA, Wang S, Marcus MD et al. Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol. 12(11), e1001987 (2014).
    • 48 Chivers PT, Sauer RT. NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem. Biol. 9(10), 1141–1148 (2002).
    • 49 Waters LS, Sandoval M, Storz G. The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J. Bacteriol. 193(21), 5887–5897 (2011).
    • 50 Wurpel DJ, Moriel DG, Totsika M, Easton DM, Schembri MA. Comparative analysis of the uropathogenic Escherichia coli surface proteome by tandem mass-spectrometry of artificially induced outer membrane vesicles. J. Proteomics 115(C), 93–106 (2015).
    • 51 Russo TA, Carlino UB, Johnson JR. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect. Immun. 69(10), 6209–6216 (2001).
    • 52 Ouyang Z, Isaacson R. Identification and characterization of a novel ABC iron transport system, Fit, in Escherichia coli. Infect. Immun. 74(12), 6949–6956 (2006).
    • 53 Snyder JA, Haugen BJ, Buckles EL et al. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72(11), 6373–6381 (2004).
    • 54 Kammler M, Schön C, Hantke K. Characterization of the ferrous iron uptake system of Escherichia coli. J. Bacteriol. 175(19), 6212–6219 (1993).
    • 55 Hantke K. Is the bacterial ferrous iron transporter FeoB a living fossil? Trends Microbiol. 11(5), 192–195 (2003).
    • 56 Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol. Microbiol. 65(4), 857–875 (2007).
    • 57 Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MFM. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35(5), 1065–1078 (2000).
    • 58 Grass G, Franke S, Taudte N et al. The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J. Bacteriol. 187(5), 1604–1611 (2005).
    • 59 Sabri M, Léveillé S, Dozois CM. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152(3), 745–758 (2006).
    • 60 Kehres DG, Janakiraman A, Slauch JM, Maguire ME. SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184(12), 3159–3166 (2002).
    • 61 Gunasekera TS, Herre AH, Crowder MW. Absence of ZnuABC-mediated zinc uptake affects virulence-associated phenotypes of uropathogenic Escherichia coli CFT073 under Zn(II)-depleted conditions. FEMS Microbiol. Lett. 300(1), 36–41 (2009).
    • 62 Sabri M, Houle S, Dozois CM. Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection. Infect. Immun. 77(3), 1155–1164 (2009).
    • 63 Wyckoff EE, Duncan D, Torres AG, Mills M, Maase K, Payne SM. Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria. Mol. Microbiol. 28(6), 1139–1152 (1998).
    • 64 Nagy G, Dobrindt U, Kupfer M, Emody L, Karch H, Hacker J. Expression of hemin receptor molecule ChuA is influenced by RfaH in uropathogenic Escherichia coli strain 536. Infect. Immun. 69(3), 1924–1928 (2001).
    • 65 Hagan EC, Mobley HLT. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect. Immun. 75(8), 3941–3949 (2007).
    • 66 Hagan EC, Mobley HLT. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol. Microbiol. 71(1), 79–91 (2009).
    • 67 Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog. 6(11), e1001187 (2010). • Detects transcriptional activation of siderophore systems in E. coli directly recovered from UTI patients.
    • 68 Wagegg W, Braun V. Ferric citrate transport in Escherichia coli requires outer membrane receptor protein fecA. J. Bacteriol. 145(1), 156–163 (1981).
    • 69 Pressler U, Staudenmaier H, Zimmermann L, Braun V. Genetics of the iron dicitrate transport system of Escherichia coli. J. Bacteriol. 170(6), 2716–2724 (1988).
    • 70 Staudenmaier H, Van Hove B, Yaraghi Z, Braun V. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. J. Bacteriol. 171(5), 2626–2633 (1989).
    • 71 Kadner RJ, Heller K, Coulton JW, Braun V. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli. J. Bacteriol. 143(1), 256–264 (1980).
    • 72 Hantke K. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol. Gen. Genet. 191(2), 301–306 (1983).
    • 73 Braun V, Brazel-Faisst C, Schneider R. Growth stimulation of Escherichia coli in serum by iron(III) aerobactin. Recycling of aerobactin. FEMS Microbiol. Lett. 21(1), 99–103 (1984).
    • 74 Chen SL, Hung C-S, Xu J et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc. Natl Acad. Sci. USA 103(15), 5977–5982 (2006).
    • 75 Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270(45), 26723–26726 (1995).
    • 76 Henderson JP, Crowley JR, Pinkner JS et al. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog. 5(2), e1000305 (2009).
    • 77 Podschun R, Sievers D, Fischer A, Ullmann U. Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J. Infect. Dis. 168(6), 1415–1421 (1993).
    • 78 Mokracka J, Koczura R, Kaznowski A. Yersiniabactin and other siderophores produced by clinical isolates of Enterobacter spp. and Citrobacter spp. FEMS Immunol. Med. Microbiol. 40(1), 51–55 (2004).
    • 79 Rutz JM, Abdullah T, Singh SP, Kalve VI, Klebba PE. Evolution of the ferric enterobactin receptor in Gram-negative bacteria. J. Bacteriol. 173(19), 5964–5974 (1991).
    • 80 Cooper SR, McArdle JV, Raymond KN. Siderophore electrochemistry: relation to intracellular iron release mechanism. Proc. Natl Acad. Sci. USA 75(8), 3551–3554 (1978).
    • 81 Hantke K. Dihydroxybenzolyserine – a siderophore for E. coli. FEMS Microbiol. Lett. 67(1), 5–8 (1990).
    • 82 Hantke K, Nicholson G, Rabsch W, Winkelmann G. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc. Natl Acad. Sci. USA 100(7), 3677–3682 (2003).
    • 83 Bister B, Bischoff D, Nicholson GJ et al. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals. 17(4), 471–481 (2004).
    • 84 Johnson JR, Russo TA, Tarr PI et al. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN(E. coli), among Escherichia coli isolates from patients with urosepsis. Infect. Immun. 68(5), 3040–3047 (2000).
    • 85 Lin H, Fischbach MA, Liu DR, Walsh CT. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J. Am. Chem. Soc. 127(31), 11075–11084 (2005).
    • 86 Zhu M, Valdebenito M, Winkelmann G, Hantke K. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151(7), 2363–2372 (2005).
    • 87 Crouch M-LV, Castor M, Karlinsey JE, Kalhorn T, Fang FC. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 67(5), 971–983 (2008).
    • 88 Johnson JR, Scheutz F, Ulleryd P, Kuskowski MA, O'Bryan TT, Sandberg T. Phylogenetic and pathotypic comparison of concurrent urine and rectal Escherichia coli isolates from men with febrile urinary tract infection. J. Clin. Microbiol. 43(8), 3895–3900 (2005).
    • 89 Lv H, Hung CS, Henderson JP. Metabolomic analysis of siderophore cheater mutants reveals metabolic costs of expression in uropathogenic Escherichia coli. J. Proteome Res. 13(3), 1397–1404 (2014).
    • 90 Konopka K, Neilands JB. Effect of serum albumin on siderophore-mediated utilization of transferrin iron. Biochemistry 23(10), 2122–2127 (1984).
    • 91 Luo M, Lin H, Fischbach MA, Liu DR, Walsh CT, Groves JT. Enzymatic tailoring of enterobactin alters membrane partitioning and iron acquisition. ACS Chem. Biol. 1(1), 29–32 (2006).
    • 92 Fischbach MA, Lin H, Zhou L et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl Acad. Sci. USA 103(44), 16502–16507 (2006).
    • 93 Magistro G, Hoffmann C, Schubert S. The salmochelin receptor IroN itself, but not salmochelin-mediated iron uptake promotes biofilm formation in extraintestinal pathogenic Escherichia coli (ExPEC). Int. J. Med. Microbiol. 305(4–5), 435–445 (2015).
    • 94 Feldmann F, Sorsa LJ, Hildinger K, Schubert S. The salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect. Immun. 75(6), 3183–3187 (2007).
    • 95 Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, Johnson JR. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect. Immun. 70(12), 7156–7160 (2002).
    • 96 Steigedal M, Marstad A, Haug M et al. Lipocalin 2 imparts selective pressure on bacterial growth in the bladder and is elevated in women with urinary tract infection. J. Immunol. 193(12), 6081–6089 (2014).
    • 97 Gibson F, Magrath DI. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62–1. Biochim. Biophys. Acta 192(2), 175–184 (1969).
    • 98 Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17(1), 14–56 (2004).
    • 99 Harris WR, Carrano CJ, Raymond KN. Coordination chemistry of microbial iron transport compounds. 16. Isolation, characterization, and formation constants of ferric aerobactin. J. Am. Chem. Soc. 101(10), 2722–2727 (1979).
    • 100 de Lorenzo V, Martinez JL. Aerobactin production as a virulence factor: a reevaluation. Eur. J. Clin. Microbiol. Infect. Dis. 7(5), 621–629 (1988).
    • 101 Soto SM, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J. Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin. Microbiol. Infect. 12(10), 1034–1036 (2006).
    • 102 Johnson JR, O'Bryan TT, Delavari P et al. Clonal relationships and extended virulence genotypes among Escherichia coli isolates from women with a first or recurrent episode of cystitis. J. Infect. Dis. 183(10), 1508–1517 (2001).
    • 103 Johnson JR, Porter S, Thuras P, Castanheira M. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant Escherichia coli infections in the United States (2011–2012). Open Forum Infect. Dis. 4(2), ofx089 (2017).
    • 104 Torres AG, Redford P, Welch RA, Payne SM. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect. Immun. 69(10), 6179–6185 (2001).
    • 105 Garcia EC, Brumbaugh AR, Mobley HLT. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun. 79(3), 1225–1235 (2011).
    • 106 Konopka K, Bindereif A, Neilands JB. Aerobactin-mediated utilization of transferrin iron. Biochemistry 21(25), 6503–6508 (1982).
    • 107 Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Int. J. Med. Microbiol. 296(8), 513–520 (2006).
    • 108 Perry RD, Fetherston JD. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. Microbes Infect. 13(10), 808–817 (2011).
    • 109 Fetherston JD, Bearden SW, Perry RD. YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yersiniabactin receptor. Mol. Microbiol. 22(2), 315–325 (1996).
    • 110 Miller MC, Parkin S, Fetherston JD, Perry RD, DeMoll E. Crystal structure of ferric-yersiniabactin, a virulence factor of Yersinia pestis. J. Inorg. Biochem. 100(9), 1495–1500 (2006).
    • 111 Ohlemacher SI, Giblin DE, d'Avignon DA, Stapleton AE, Trautner BW, Henderson JP. Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J. Clin. Invest. 127(11), 4018–4030 (2017). •• Identifies escherichelin as an additional siderophore-like cellular product of Yersinia high pathogenicity island that acts as an inhibitor of the virulence-associated pyochelin siderophore system in Pseudomonas.
    • 112 Koh E-I, Robinson AE, Bandara N, Rogers BE, Henderson JP. Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat. Chem. Biol. 13, 1016–1021 (2017). •• Establishes yersiniabactin as a metallophore capable of importing both iron and copper ions for nutritional use.
    • 113 Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 8(8), 731–736 (2012). •• Identifies a noncanonical role for yersiniabactin as a copper ligand during clinical UTI. Supports UPEC copper sequestration to resist copper toxicity as a virulence strategy.
    • 114 Koh E-I, Hung CS, Henderson JP. The yersiniabactin-associated ATP binding cassette proteins YbtP and YbtQ enhance Escherichia coli fitness during high-titer cystitis. Infect. Immun. 84(5), 1312–1319 (2016).
    • 115 Bachman MA, Oyler JE, Burns SH et al. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect. Immun. 79(8), 3309–3316 (2011).
    • 116 Koh E-I, Hung CS, Parker KS, Crowley JR, Giblin DE, Henderson JP. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 7, 1011–1022 (2015).
    • 117 Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol. Microbiol. 93(4), 759–775 (2014).
    • 118 Bobrov AG, Kirillina O, Fosso MY et al. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics 9(6), 757–772 (2017).
    • 119 Macomber L, Imlay JA. The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl Acad. Sci. USA 106(20), 8344–8349 (2009).
    • 120 Koh E-I, Henderson JP. Microbial copper-binding siderophores at the host–pathogen interface. J. Biol. Chemis. 290(31), 18967–18974 (2015).
    • 121 Chaturvedi KS, Henderson JP. Pathogenic adaptations to host-derived antibacterial copper. Front. Cell. Infect. Microbiol. 4, 3 (2014).
    • 122 White C, Lee J, Kambe T, Fritsche K, Petris MJ. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284(49), 33949–33956 (2009).
    • 123 Chaturvedi KS, Hung CS, Giblin DE et al. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem. Biol. 9(2), 551–561 (2013). •• Observes yersiniabactin-mediated protection of UPEC during phagocytosis in the presence of copper ions, supporting a noncanonical cytoprotective role for this metallophore.
    • 124 Mislin GL, Burger A, Abdallah MA. Synthesis of new thiazole analogues of pyochelin, a siderophore of Pseudomonas aeruginosa and Burkholderia cepacia. A new conversion of thiazolines into thiazoles. Tetrahedron 60(52), 12139–12145 (2004).
    • 125 Mislin GLA, Hoegy F, Cobessi D, Poole K, Rognan D, Schalk IJ. Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa. J. Mol. Biol. 357(5), 1437–1448 (2006).
    • 126 Bitsori M, Maraki S, Koukouraki S, Galanakis E. Pseudomonas Aeruginosa urinary tract infection in children: risk factors and outcomes. J. Urol. 187(1), 260–264 (2012).
    • 127 Horwitz D, McCue T, Mapes AC et al. Decreased microbiota diversity associated with urinary tract infection in a trial of bacterial interference. J. Infect. 71(3), 358–367 (2015).
    • 128 Bohac TJ, Shapiro JA, Wencewicz TA. Rigid oxazole acinetobactin analog blocks siderophore cycling in Acinetobacter baumannii. ACS Infect. Dis. 3(11), 802–806 (2017).