We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections

    Rawan Huwaitat

    Biofunctional Nanomaterials Group, School of Pharmacy, Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK

    ,
    Alice P McCloskey

    Biofunctional Nanomaterials Group, School of Pharmacy, Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK

    ,
    Brendan F Gilmore

    Biofunctional Nanomaterials Group, School of Pharmacy, Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK

    &
    Garry Laverty

    *Author for correspondence:

    E-mail Address: garry.laverty@qub.ac.uk

    Biofunctional Nanomaterials Group, School of Pharmacy, Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK

    Published Online:https://doi.org/10.2217/fmb-2016-0035

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Frieden M. Antibiotic Resistance Threats In The United States (2013). www.his.org.uk/files/3713/7941/9908/Antibiotic_Resistance_Threats_in_the_United_States_2013.pdf.
    • 2 O'Neill J. Vaccines And Alternative Approaches: Reducing Our Dependence On Antimicrobials (2016). http://amr-review.org/sites/default/files/Vaccines%20and%20alternatives_v4_LR.pdf.
    • 3 Laxminarayan R, Duse A, Wattal C et al. Antibiotic resistance – the need for global solutions. Lancet Infect. Dis. 13(12), 1057–1098 (2013). •• Reveals the dramatic rise of Gram-negative resistance to antibiotics and identify key areas in which action is urgently needed.
    • 4 Cantóna R, Horcajadad JP, Oliver A, Garbajosaa PR, Vila J. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance. Enferm. Infecc. Microbiol. Clin. 31(Suppl. 4), 3–11 (2013).
    • 5 Health First Europe. EU Policy Recommendations on Increased Patient Safety and the Prevention of Healthcare Associated Infections (2015). http://www.healthfirsteurope.org/uploads/Modules/Newsroom/hfe-hcai-paper-08022012-print-quality-2.pdf.
    • 6 UK 5 Year Antimicrobial Resistance (AMR) Strategy 2013– 2018 Annual Progress Report And Implementation Plan (2014). www.gov.uk/government/uploads/system/uploads/attachment_data/file/385733/UK_AMR_annual_report.pdf.
    • 7 Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6, 25–64 (2014).
    • 8 Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 46(3), 266–271 (2015).
    • 9 Conly JM, Johnston BL. Where are all the new antibiotics? The new antibiotic paradox. Can. J. Infect. Dis. Med. Microbiol. 16(3), 159–160 (2005).
    • 10 Ventola CL. The antibiotic resistance crisis. Part 1: causes and threats. P T 40(4), 277–283 (2015).
    • 11 Ledford H. FDA under pressure to relax drug rules. Nature 492(7427), 19 (2012).
    • 12 Rigel NW, Silhavy TJ. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr. Opin. Microbiol. 15(2), 189–193 (2012).
    • 13 Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13(10), 605–619 (2015).
    • 14 Galdiero S, Falanga A, Cantisani M et al. Microbe–host interactions: structure and role of Gram-negative bacterial porins. Curr. Protein. Pept. Sci. 13(8), 843–854 (2012). •• Reviews the role of porins in activating immunological responses and their influence within antibiotic resistance mechanisms.
    • 15 Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13(10), 620–630 (2015).
    • 16 Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr. Res. 378, 35–44 (2013).
    • 17 Blot N, Berrier C, Hugouvieux-Cotte-Pattat N, Ghazi A, Condemine G. The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J. Biol. Chem. 277(10), 7936–7944 (2002).
    • 18 Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 1794(5), 808–816 (2009). •• Outlines possible mechanisms for permeating the Gram-negative outer membrane and the bacterial pathways that modify its architecture to resist antibiotics.
    • 19 Band VI, Weiss DS. Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics 4(1), 18–41 (2015). •• Provides an overview of the biomolecular mechanisms utilized by Gram-negative bacteria to increase resistance to antimicrobial peptides.
    • 20 Pelletier MR, Casella LG, Jones JW et al. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. Antimicrob. Agents. Chemother. 57(10), 4831–4840 (2013).
    • 21 Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS. Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS. Pathog. 7(12), e1002454 (2011).
    • 22 Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI. PhoPQ regulates acidic glycerophospholipid content of the Salmonella typhimurium outer membrane. Proc. Natl Acad. Sci. 111(5), 1963–1968 (2014).
    • 23 Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6(12), 893–903 (2008).
    • 24 Tängdén T, Adler M, Cars O, Sandegren L, Löwdin EJ. Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. Antimicrob. Chemother. 68(6), 1319–1326 (2013).
    • 25 Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front. Microbiol. 6, 377 (2015). •• Explores RND efflux pumps and the development of new compounds to limit their impact.
    • 26 Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 453(2), 254–267 (2014).
    • 27 Alvarez-Ortega C, Olivares J, Martínez JL. RND multidrug efflux pumps: what are they good for? Front. Microbiol. 4, 7 (2013).
    • 28 Dubos RJ. Studies on a bacterial agent extracted from a soil Bacillus: I. preparation of the agent. Its activity in vitro. J. Exp. Med. 70(1), 1–10 (1939).
    • 29 Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals 6(12), 1543–1575 (2013).
    • 30 Laverty G, Gorman SP, Gilmore BF. The potential of antimicrobial peptides as biocides. Int. J. Mol. Sci. 12(10), 6566–6596 (2011).
    • 31 Giuliani A, Pirri G, Rinaldi AC. Antimicrobial peptides: the LPS connection. Methods Mol. Biol. 618, 137–154 (2010).
    • 32 Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin-II: buforin-II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244(1), 253–257 (1998).
    • 33 Bradshaw J. Cationic antimicrobial peptides: issues for potential clinical use. Bio. Drugs 17(4), 233–240 (2003).
    • 34 Yu Z, Qin W, Lin J, Fang S, Qiu J. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed. Res. Int. 679109 (2015).
    • 35 Velkov T, Roberts KD, Nation RL et al. Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 8(6), 711–724 (2013).
    • 36 Liu YY, Wang Y, Walsh TR et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16(2), 161–168 (2016).
    • 37 Vaara M. Polymyxins and their novel derivative. Curr. Opin. Microbiol. 13(5), 574–581 (2010).
    • 38 Park SC, Park Y, Hahm HS. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int. J. Mol. Sci. 12(9), 5971–5992 (2011).
    • 39 Joo SH. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 20(1), 19–26 (2012).
    • 40 Zhang L, Dhillon P, Yan H, Farmer S, Hancock RE. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob. Agents. Chemother. 44(12), 3317–3321 (2000).
    • 41 Kondejewski LH, Jelokhani-Niaraki M, Farmer SW et al. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J. Biol. Chem. 274(19), 13181–13192 (1999).
    • 42 Goodwin D, Simerska P, Toth. Peptides as therapeutics with enhanced bioactivity. Cur. Med. Chem. 19(26), 4451–4461 (2012).
    • 43 Tängdén T. Combination antibiotic therapy for multi-drug resistant Gram-negative bacteria. Ups. J. Med. Sci. 119(2), 149–153 (2014).
    • 44 Kim S, Lieberman TD, Kishony R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. 111(40), 14494–14499 (2014).
    • 45 Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with Gram-negative bacteria. Clin. Microbiol. Rev. 25(3), 450–470 (2012).
    • 46 Burgess DS. Use of pharmacokinetics and pharmacodynamics to optimize antimicrobial treatment of Pseudomonas aeruginosa infections. Clin. Infect. Dis. 40(Suppl. 2), S99–S104 (2005).
    • 47 Morones-Ramirez RJ, Winkler JA, Spina CS, Collins JJ. Silver enhances antibiotic activity against Gram-negative bacteria. Sci. Transl. Med. 5(190), 190ra81 (2013).
    • 48 Lee W, Kim KJ, Lee DG. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 6, 1191–1201 (2014).
    • 49 Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomedicine 9, 2399–2407 (2014).
    • 50 Gupta SK, Nayak RP. Dry antibiotic pipeline: regulatory bottlenecks and regulatory reforms. J. Pharmacol. Pharmacother. 5(1), 4–7 (2014).
    • 51 Bertheta J, Damiena P, Hamzeh-Cognassea H et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin. Immunol. 145(3), 189–200 (2012).
    • 52 Nikado H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67(4), 593–656 (2003).
    • 53 Harvey M, Cave G. Co-administration of phospholipid emulsion with first dose bactericidal antibiotic may retard progression of the sepsis response in Gram-negative septicaemia. Med. Hypotheses 83(5), 563–565 (2014).
    • 54 Kunsmann L, Rüter C, Bauwens A et al. Virulence from vesicles: novel mechanisms of host cell injury by Escherichia coli O104:H4 outbreak strain. Sci. Rep. 5, 13252 (2015).
    • 55 Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell. Mol. Life. Sci. 72(3), 557–581 (2015).
    • 56 Schumann RR. Old and new findings on lipopolysaccharide-binding protein: a soluble pattern-recognition molecule. Biochem. Soc. Trans. 39(4), 989–993 (2011).
    • 57 Domingues MM, Lopes SC, Santos NC, Quintas A, Castanho MA. Fold-unfold transitions in the selectivity and mechanism of action of the N-terminal fragment of the bactericidal/permeability-increasing protein (rBPI21). Biophys. J. 96(3), 987–996 (2009).
    • 58 Liu Y, Ni B, Ren JD et al. Cyclic limulus anti-lipopolysaccharide (LPS) factor-derived peptide CLP-19 antagonizes LPS function by blocking binding to LPS binding protein. Biol. Pharm. Bull. 34(11), 1678–1683 (2011).
    • 59 Landeta C, Blazyk JL, Hatahet F. Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nat. Chem. Biol. 11(4), 292–298 (2015).
    • 60 Dutton RJ, Boyd D, Berkmen M, Beckwith J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl Acad. Sci. 105, 11933–11938 (2008).
    • 61 Depuydt M, Messens J, Collet JF. How proteins form disulfide bonds. Antioxid. Redox. Signal 15(1), 49–66 (2011).
    • 62 Inaba K, Murakami S, Suzuki M et al. Crystal structure of the DsbB–DsbA complex reveals a mechanism of disulfide bond generation. Cell 127(4), 789–801 (2006).
    • 63 Hayashi S, Abe M, Kimoto M, Furukawa S, Nakazawa T. The DsbA–DsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiol. Immunol. 44(1), 41–50 (2000).
    • 64 Opperman TJ, Kwasny SM, Kim HS et al. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob. Agents. Chemother. 58(2), 722–733 (2014).
    • 65 Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 6, 660 (2015).
    • 66 Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28(2), 337–418 (2015).
    • 67 Puckett SE, Reese KA, Mitev GM et al. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers. Antimicrob. Agents Chemother. 56(12), 6147–6153 (2012).
    • 68 Robinson R. RNAi therapeutics: how likely, how soon? PLoS Biol. 2(1), e28 (2004).
    • 69 Long TE, Williams JT. Cephalosporins currently in early clinical trials for the treatment of bacterial infections. Expert. Opin. Investig. Drugs 23(10), 1375–1387 (2014).
    • 70 Czaplewski L, Bax R, Clokie M et al. Alternatives to antibiotics – a pipeline portfolio review. Lancet Infect. Dis. 16(2), 239–251 (2016).
    • 71 Kohira N, West J, Ito A et al. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother. 60(2), 729–734 (2015).
    • 72 Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al. Liposome: classification, preparation, and applications. Nanoscale. Res. Lett. 8(1), 102 (2013).
    • 73 Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug. Deliv. Rev. 65(1), 36–48 (2013).
    • 74 Colzi I, Troyan AN, Perito B et al. Antibiotic delivery by liposomes from prokaryotic microorganisms: Similia cum similis works better. Eur. J. Pharm. Biopharm. 94, 411–418 (2015).
    • 75 Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nature Rev. Drug Discovery 4(2), 145–160 (2005).
    • 76 Nicolosi D, Scalia M, Nicolosi VM, Pignatello R. Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. Int. J. Antimicrob. Agents 35(6), 553–5589 (2010).
    • 77 Elhissi AM, Ahmed W, Hassan IU, Dhanak VR, D'Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv. 837327 (2012).
    • 78 Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. Nanomedicine in the management of microbial infection – overview and perspectives. Nano Today 9(4), 478–498 (2014).
    • 79 Usui Y, Haniu H, Tsuruoka S, Saito N. Carbon nanotubes innovate on medical technology. Med. Chem. 2(1), 1–6 (2012).
    • 80 Rastogi V, Yadav P, Bhattacharya SS et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J. Drug Deliv. 670815 (2014).
    • 81 Arias LR, Yang L. Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5), 3003–3012 (2009).
    • 82 Yang C, Mamouni J, Tang Y, Yang L. Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20), 16013–16019 (2010).
    • 83 Liu T, Tang H, Zhao J, Li D, Li R, Sun X. A study on the bactericidal properties of Cu-coated carbon nanotubes. Front. Mater. Sci. 1(2), 147–150 (2007).
    • 84 McCloskey AP, Gilmore BF, Laverty G. Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3(4), 791–821 (2014).
    • 85 Zhang L, Dhillon P, Yan H, Farmer S, Hancock RE. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44, 3317–3321 (2000).
    • 86 Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem. Soc. Rev. 41(18), 6023–6041 (2012).
    • 87 Fernandez-Lopez S, Kim HS, Choi EC et al. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412(6845), 452–455 (2001).
    • 88 Rodríguez-Vázquez N, Ozores HL, Guerra A et al. Membrane-targeted self-assembling cyclic peptide nanotubes. Curr. Top. Med. Chem. 14(23), 2647–2461 (2014).
    • 89 Trudil D. Phage lytic enzymes: a history. Virol. Sin. 30(1), 26–32 (2015).
    • 90 Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage 1(2), 66–85 (2011).
    • 91 Briers Y, Walmagh M, Van Puyenbroeck et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. MBio 5(4), e01379–14 (2014).
    • 92 Lukacik P, Barnard TJ, Hinnebusch BJ, Buchanan SK. Specific targeting and killing of Gram-negative pathogens with an engineered phage lytic enzyme. Virulence 4(1), 90–96 (2013). • Provides a proof of principle that phage lytic enzymes such as T4 lysozyme can be engineered to target Gram-negative bacteria.