We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/fmb-2016-0005

Tuberculosis remains a major human health threat that infects one in three individuals worldwide. Infection with Mycobacterium tuberculosis is a standoff between host and bacteria in the formation of a granuloma. This review will introduce a variety of bacterial and host factors that impact individual granuloma fates. The authors describe advances in the development of in vitro granuloma models, current evidence surrounding infection and granuloma development, and the applicability of existing in vitro models in the study of human disease. In vitro models of infection help improve our understanding of pathophysiology and allow for the discovery of other potential models of study.

Papers of special note have been highlighted as: • of interest

References

  • 1 WHO. www.who.int/tb/country/en/
  • 2 de Jong BC, Adetifa I, Walther B et al. Differences between tuberculosis cases infected with Mycobacterium africanum, west African type 2, relative to Euro-American Mycobacterium tuberculosis: an update. FEMS Immunol. Med. Microbiol. 58(1), 102–105 (2010).
  • 3 de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum – review of an important cause of human tuberculosis in West Africa. PLoS Negl. Trop. Dis. 4(9), e744 (2010).
  • 4 Gong C, Linderman JJ, Kirschner D. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Math. Biosci. Eng. 12(3), 625–642 (2015).
  • 5 Corbett EL, Watt CJ, Walker N et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163(9), 1009–1021 (2003).
  • 6 Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12(5), 388–404 (2013).
  • 7 Zumla A, Chakaya J, Centis R et al. Tuberculosis treatment and management – an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir. Med. 3(3), 220–234 (2015).
  • 8 Mdluli K, Kaneko T, Upton A. The tuberculosis drug discovery and development pipeline and emerging drug targets. Cold Spring Harb. Perspect. Med. 5(6), 10.1101/cshperspect.a021154 (2015).
  • 9 Ernst JD. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12(8), 581–591 (2012).
  • 10 van Crevel R, Ottenhoff TH, van der Meer JW. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev. 15(2), 294–309 (2002).
  • 11 Warner DF, Koch A, Mizrahi V. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol. 23(1), 14–21 (2015).
  • 12 Gold MC, Cerri S, Smyk-Pearson S et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8(6), e1000407 (2010).
  • 13 Cambier CJ, Takaki KK, Larson RP et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505(7482), 218–222 (2014).
  • 14 Ernst JD. Macrophage receptors for Mycobacterium tuberculosis. Infect. Immun. 66(4), 1277–1281 (1998).
  • 15 Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).
  • 16 Leemans JC, Florquin S, Heikens M, Pals ST, van der Neut R, Van Der Poll T. CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis. J. Clin. Invest. 111(5), 681–689 (2003).
  • 17 Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97(4), 435–447 (1999).
  • 18 Glickman MS, Jacobs WR Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104(4), 477–485 (2001).
  • 19 Gonzalez-Juarrero M, Orme IM. Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis. Infect. Immun. 69(2), 1127–1133 (2001).
  • 20 Wolf AJ, Linas B, Trevejo-Nunez GJ et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 179(4), 2509–2519 (2007).
  • 21 Skold M, Behar SM. Tuberculosis triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes. J. Immunol. 181(9), 6349–6360 (2008).
  • 22 Flynn JL, Chan J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).
  • 23 Birkness KA, Guarner J, Sable SB et al. An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunol. Cell Biol. 85(2), 160–168 (2007).
  • 24 Kaku T, Kawamura I, Uchiyama R, Kurenuma T, Mitsuyama M. RD1 region in mycobacterial genome is involved in the induction of necrosis in infected RAW264 cells via mitochondrial membrane damage and ATP depletion. FEMS Microbiol. Lett. 274(2), 189–195 (2007).
  • 25 Khader SA, Partida-Sanchez S, Bell G et al. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J. Exp. Med. 203(7), 1805–1815 (2006).
  • 26 Robinson RT, Khader SA, Martino CA et al. Mycobacterium tuberculosis infection induces il12rb1 splicing to generate a novel IL-12Rbeta1 isoform that enhances DC migration. J. Exp. Med. 207(3), 591–605 (2010).
  • 27 Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS, Pamer EG. Essential yet limited role for CCR2(+) inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife 2, e01086 (2013).
  • 28 Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. Semin. Immunol. 26(6), 601–609 (2014).
  • 29 Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front. Immunol. 3, 411 (2013).
  • 30 Reece ST, Kaufmann SH. Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis? Curr. Opin. Microbiol. 15(1), 63–70 (2012).
  • 31 Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36(3), 514–532 (2012).
  • 32 Guirado E, Schlesinger LS. Modeling the Mycobacterium tuberculosis granuloma – the critical battlefield in host immunity and disease. Front. Immunol. 4, 98 (2013).
  • 33 Caruso AM, Serbina N, Klein E, Triebold K, Bloom BR, Flynn JL. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 162(9), 5407–5416 (1999).
  • 34 Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10(9), 943–948 (2009).
  • 35 Ladel CH, Daugelat S, Kaufmann SH. Immune response to Mycobacterium bovis Bacille Calmette Guerin infection in major histocompatibility complex class I- and II-deficient knock-out mice: contribution of CD4 and CD8 T cells to acquired resistance. Eur. J. Immunol. 25(2), 377–384 (1995).
  • 36 Ladel CH, Blum C, Dreher A, Reifenberg K, Kaufmann SH. Protective role of gamma/delta T cells and alpha/beta T cells in tuberculosis. Eur. J. Immunol. 25(10), 2877–2881 (1995).
  • 37 Ladel CH, Hess J, Daugelat S, Mombaerts P, Tonegawa S, Kaufmann SH. Contribution of alpha/beta and gamma/delta T lymphocytes to immunity against Mycobacterium bovis Bacillus Calmette Guerin: studies with T cell receptor-deficient mutant mice. Eur. J. Immunol. 25(3), 838–846 (1995).
  • 38 Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA 89(24), 12013–12017 (1992).
  • 39 Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J. Exp. Med. 193(3), 271–280 (2001).
  • 40 Apostolou I, Takahama Y, Belmant C et al. Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc. Natl Acad. Sci. USA 96(9), 5141–5146 (1999).
  • 41 Sugawara I, Yamada H, Mizuno S, Li CY, Nakayama T, Taniguchi M. Mycobacterial infection in natural killer T cell knockout mice. Tuberculosis (Edinb.) 82(2–3), 97–104 (2002).
  • 42 Juffermans NP, Florquin S, Camoglio L et al. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J. Infect. Dis. 182(3), 902–908 (2000).
  • 43 Yamada H, Mizumo S, Horai R, Iwakura Y, Sugawara I. Protective role of interleukin-1 in mycobacterial infection in IL-1 alpha/beta double-knockout mice. Lab. Invest. 80(5), 759–767 (2000).
  • 44 Altare F, Ensser A, Breiman A et al. Interleukin-12 receptor beta1 deficiency in a patient with abdominal tuberculosis. J. Infect. Dis. 184(2), 231–236 (2001).
  • 45 Gideon HP, Phuah J, Myers AJ et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog. 11(1), e1004603 (2015).
  • 46 Khader SA, Pearl JE, Sakamoto K et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J. Immunol. 175(2), 788–795 (2005).
  • 47 Powrie F, Coffman RL. Inhibition of cell-mediated immunity by IL4 and IL10. Res. Immunol. 144(8), 639–643 (1993).
  • 48 Bonecini-Almeida MG, Ho JL, Boechat N et al. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infect. Immun. 72(5), 2628–2634 (2004).
  • 49 Remus N, Reichenbach J, Picard C et al. Impaired interferon gamma-mediated immunity and susceptibility to mycobacterial infection in childhood. Pediatr. Res. 50(1), 8–13 (2001).
  • 50 Fieschi C, Casanova JL. The role of interleukin-12 in human infectious diseases: only a faint signature. Eur. J. Immunol. 33(6), 1461–1464 (2003).
  • 51 Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med. 186(1), 39–45 (1997).
  • 52 van de Vosse E, de Paus RA, van Dissel JT, Ottenhoff TH. Molecular complementation of IL-12Rbeta1 deficiency reveals functional differences between IL-12Rbeta1 alleles including partial IL-12Rbeta1 deficiency. Hum. Mol. Genet. 14(24), 3847–3855 (2005).
  • 53 Lin Y, Zhang M, Barnes PF. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect. Immun. 66(3), 1121–1126 (1998).
  • 54 Wickremasinghe MI, Thomas LH, Friedland JS. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network. J. Immunol. 163(7), 3936–3947 (1999).
  • 55 Khader SA, Rangel-Moreno J, Fountain JJ et al. In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity. J. Immunol. 183(12), 8004–8014 (2009).
  • 56 Khader SA, Guglani L, Rangel-Moreno J et al. IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J. Immunol. 187(10), 5402–5407 (2011).
  • 57 Slight SR, Rangel-Moreno J, Gopal R et al. CXCR5(+) T helper cells mediate protective immunity against tuberculosis. J. Clin. Invest. 123(2), 712–726 (2013).
  • 58 Eum SY, Kong JH, Hong MS et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137(1), 122–128 (2010).
  • 59 Berry MP, Graham CM, McNab FW et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309), 973–977 (2010).
  • 60 Chen RY, Dodd LE, Lee M et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci. Transl. Med. 6(265), 265ra166 (2014).
  • 61 Lenaerts A, Barry CE, Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev. 264(1), 288–307 (2015). • Recent review that describes how the granuloma environment of Mycobacterium tuberculosis (Mtb) infection may be more heterogeneous than previously thought.
  • 62 Lin PL, Ford CB, Coleman MT et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20(1), 75–79 (2014).
  • 63 During A, Penel G, Hardouin P. Understanding the local actions of lipids in bone physiology. Prog. Lipid Res. 59, 126–146 (2015).
  • 64 Russell CD, Schwarze J. The role of pro-resolution lipid mediators in infectious disease. Immunology 141(2), 166–173 (2014).
  • 65 Tobin DM, Roca FJ, Ray JP, Ko DC, Ramakrishnan L. An enzyme that inactivates the inflammatory mediator leukotriene b4 restricts mycobacterial infection. PLoS ONE 8(7), e67828 (2013).
  • 66 Tobin DM, Ramakrishnan L. TB: the Yin and Yang of lipid mediators. Curr. Opin. Pharmacol. 13(4), 641–645 (2013).
  • 67 Mayer-Barber KD, Sher A. Cytokine and lipid mediator networks in tuberculosis. Immunol. Rev. 264(1), 264–275 (2015).
  • 68 Ehrt S, Rhee K, Schnappinger D. Mycobacterial genes essential for the pathogen's survival in the host. Immunol. Rev. 264(1), 319–326 (2015).
  • 69 Zheng H, Lu L, Wang B et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3(6), e2375 (2008).
  • 70 Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178(5), 1274–1282 (1996).
  • 71 Yang R, Xi C, Sita DR et al. The RD1 locus in the Mycobacterium tuberculosis genome contributes to the maturation and secretion of IL-1alpha from infected macrophages through the elevation of cytoplasmic calcium levels and calpain activation. Pathog. Dis. 70(1), 51–60 (2014).
  • 72 Behr MA, Wilson MA, Gill WP et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284(5419), 1520–1523 (1999).
  • 73 Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327(5964), 466–469 (2010).
  • 74 Elkington PT, Ugarte-Gil CA, Friedland JS. Matrix metalloproteinases in tuberculosis. Eur. Respir. J. 38(2), 456–464 (2011).
  • 75 Nouailles G, Dorhoi A, Koch M et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J. Clin. Invest. 124(3), 1268–1282 (2014).
  • 76 Taylor JL, Hattle JM, Dreitz SA et al. Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection. Infect. Immun. 74(11), 6135–6144 (2006).
  • 77 Mostowy S, Cleto C, Sherman DR, Behr MA. The Mycobacterium tuberculosis complex transcriptome of attenuation. Tuberculosis (Edinb.) 84(3–4), 197–204 (2004).
  • 78 Selvaraj P, Alagarasu K, Singh B, Afsal K. CCL5 (RANTES) gene polymorphisms in pulmonary tuberculosis patients of south India. Int. J. Immunogenet. 38(5), 397–402 (2011).
  • 79 Groom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 89(2), 207–215 (2011).
  • 80 Flores-Villanueva PO, Ruiz-Morales JA, Song CH et al. A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J. Exp. Med. 202(12), 1649–1658 (2005).
  • 81 Rutter JL, Mitchell TI, Buttice G et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res. 58(23), 5321–5325 (1998).
  • 82 Ganachari M, Ruiz-Morales JA, Gomez de la Torre Pretell JC, Dinh J, Granados J, Flores-Villanueva PO. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals. PLoS ONE 5(1), e8881 (2010).
  • 83 Loebel RO, Shorr E, Richardson HB. The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. J. Bacteriol. 26(2), 167–200 (1933).
  • 84 Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43(3), 717–731 (2002).
  • 85 Gengenbacher M, Rao SP, Pethe K, Dick T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156(Pt 1), 81–87 (2010).
  • 86 Rao SP, Alonso S, Rand L, Dick T, Pethe K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 105(33), 11945–11950 (2008).
  • 87 Xie Z, Siddiqi N, Rubin EJ. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 49(11), 4778–4780 (2005).
  • 88 Yano T, Li LS, Weinstein E, Teh JS, Rubin H. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2). J. Biol. Chem. 281(17), 11456–11463 (2006).
  • 89 Albrethsen J, Agner J, Piersma SR et al. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol. Cell. Proteomics 12(5), 1180–1191 (2013).
  • 90 Rifat D, Karakousis PC. Differential regulation of the two-component regulatory system senX3-regX3 in Mycobacterium tuberculosis. Microbiology 160(Pt 6), 1125–1133 (2014).
  • 91 Kjellsson MC, Via LE, Goh A et al. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob. Agents Chemother. 56(1), 446–457 (2012).
  • 92 Pienaar E, Cilfone NA, Lin PL et al. A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J. Theor. Biol. 367, 166–179 (2015).
  • 93 Prideaux B, Dartois V, Staab D et al. High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal. Chem. 83(6), 2112–2118 (2011).
  • 94 Shleeva M, Kondratieva T, Rubakova E, Vostroknutova G, Kaprelyants A, Apt A. Reactivation of dormant ‘non-culturable’ Mycobacterium tuberculosis developed in vitro after injection in mice: both the dormancy depth and host genetics influence the outcome. Microb. Pathog. 78, 63–66 (2015).
  • 95 Singh A, Sharma S. Chemotherapeutic efficacy of thioridazine as an adjunct drug in a murine model of latent tuberculosis. Tuberculosis (Edinb.) 94(6), 695–700 (2014).
  • 96 Tsai MC, Chakravarty S, Zhu G et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol. 8(2), 218–232 (2006).
  • 97 Rhoades ER, Frank AA, Orme IM. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung Dis. 78(1), 57–66 (1997).
  • 98 Ulrichs T, Kaufmann SH. New insights into the function of granulomas in human tuberculosis. J. Pathol. 208(2), 261–269 (2006).
  • 99 Jenney CR, DeFife KM, Colton E, Anderson JM. Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silane-modified surfaces in vitro. Student Research Award in the Master's Degree Candidate Category, 24th Annual Meeting of the Society for Biomaterials, San Diego, CA, April 22–26, 1998. J. Biomed. Mater. Res. 41(2), 171–184 (1998).
  • 100 Fayyazi A, Eichmeyer B, Soruri A et al. Apoptosis of macrophages and T cells in tuberculosis associated caseous necrosis. J. Pathol. 191(4), 417–425 (2000).
  • 101 Al Shammari B, Shiomi T, Tezera L et al. The extracellular matrix regulates granuloma necrosis in tuberculosis. J. Infect. Dis. 212(3), 463–473 (2015). • This manuscript identifies the key role that an extracellular matrix plays in Mtb pathophysiology.
  • 102 Shi C, Shi J, Xu Z. A review of murine models of latent tuberculosis infection. Scand. J. Infect. Dis. 43(11–12), 848–856 (2011).
  • 103 Roh IS, Cho S, Eum SY, Cho SN. Kinetics of IFN-gamma and TNF-alpha gene expression and their relationship with disease progression after infection with Mycobacterium tuberculosis in guinea pigs. Yonsei Med. J. 54(3), 707–714 (2013).
  • 104 Somashekar BS, Amin AG, Rithner CD et al. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J. Proteome Res. 10(9), 4186–4195 (2011).
  • 105 Lu JB, Chen BW, Wang GZ et al. Recombinant tuberculosis vaccine AEC/BC02 induces antigen-specific cellular responses in mice and protects guinea pigs in a model of latent infection. J. Microbiol. Immunol. Infect. (2014).
  • 106 Subbian S, Eugenin E, Kaplan G. Detection of Mycobacterium tuberculosis in latently infected lungs by immunohistochemistry and confocal microscopy. J. Med. Microbiol. 63(Pt 11), 1432–1435 (2014).
  • 107 Subbian S, O'Brien P, Kushner NL et al. Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell. Commun. Signal. 11(1), doi:16-811X-11-16 (2013).
  • 108 Flynn JL, Gideon HP, Mattila JT, Lin PL. Immunology studies in non-human primate models of tuberculosis. Immunol. Rev. 264(1), 60–73 (2015).
  • 109 Lin PL, Myers A, Smith L et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum. 62(2), 340–350 (2010).
  • 110 Magombedze G, Garira W, Mwenje E. Modelling the human immune response mechanisms to Mycobacterium tuberculosis infection in the lungs. Math. Biosci. Eng. 3(4), 661–682 (2006).
  • 111 Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ. Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 186(6), 3472–3483 (2011).
  • 112 Ray JC, Flynn JL, Kirschner DE. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J. Immunol. 182(6), 3706–3717 (2009).
  • 113 Warrender C, Forrest S, Koster F. Modeling intercellular interactions in early Mycobacterium infection. Bull. Math. Biol. 68(8), 2233–2261 (2006).
  • 114 Bru A, Cardona PJ. Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS ONE 5(9), e12985 (2010).
  • 115 Ganguli S, Gammack D, Kirschner DE. A metapopulation model of granuloma formation in the lung during infection with Mycobacterium tuberculosis. Math. Biosci. Eng. 2(3), 535–560 (2005).
  • 116 Marino S, El-Kebir M, Kirschner D. A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis. J. Theor. Biol. 280(1), 50–62 (2011).
  • 117 Wigginton JE, Kirschner D. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J. Immunol. 166(3), 1951–1967 (2001).
  • 118 Parasa VR, Rahman MJ, Ngyuen Hoang AT, Svensson M, Brighenti S, Lerm M. Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue. Dis. Model. Mech. 7(2), 281–288 (2014). • Study describes the creation of an experimental lung tissue model of a Mtb granuloma. This allows for the complex modeling of infection in a 3D tissue model.
  • 119 Nguyen Hoang AT, Chen P, Juarez J et al. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am. J. Physiol. Lung Cell. Mol. Physiol. 302(2), L226–37 (2012).
  • 120 Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894), 191–195 (2002).
  • 121 Guirado E, Mbawuike U, Keiser TL et al. Characterization of host and microbial determinants in individuals with latent tuberculosis infection using a human granuloma model. MBio 6(1), e02537-14 (2015). • Identifies how granuloma models can be used to study the impact of host and microbial factors on latency.
  • 122 Franklin GF, Coghill G, McIntosh L, Cree IA. Monocyte aggregation around agarose beads in collagen gels: a 3-dimensional model of early granuloma formation? J. Immunol. Methods 186(2), 285–291 (1995).
  • 123 Postlethwaite AE, Jackson BK, Beachey EH, Kang AH. Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen-and mitogen-stimulated lymphocytes. J. Exp. Med. 155(1), 168–178 (1982).
  • 124 Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell. Microbiol. 6(5), 423–433 (2004).
  • 125 Au FC, Webber B, Rosenberg SA. Pulmonary granulomas induced by BCG. Cancer 41(6), 2209–2214 (1978).
  • 126 Daniel J, Deb C, Dubey VS et al. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J. Bacteriol. 186(15), 5017–5030 (2004).
  • 127 Deb C, Lee CM, Dubey VS et al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 4(6), e6077 (2009).
  • 128 Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7(6), e1002093 (2011).
  • 129 Seitzer U, Gerdes J. Generation and characterization of multicellular heterospheroids formed by human peripheral blood mononuclear cells. Cells Tissues Organs 174(3), 110–116 (2003).
  • 130 Birkness KA, Guarner J, Sable SB et al. An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunol. Cell Biol. 85(2), 160–168 (2007).
  • 131 Kapoor N, Pawar S, Sirakova TD, Deb C, Warren WL, Kolattukudy PE. Human granuloma in vitro model, for TB dormancy and resuscitation. PLoS ONE 8(1), e53657 (2013).
  • 132 Wang H, Maeda Y, Fukutomi Y, Makino M. An in vitro model of Mycobacterium leprae induced granuloma formation. BMC Infect. Dis. 13, 279–2334–13–279 (2013). • First study to describe the creation of an in vitro dormancy model of Mtb infection. This is a key breakthrough in the understanding of Mtb pathophysiology.
  • 133 Braian C, Svensson M, Brighenti S, Lerm M, Parasa VR. A 3D human lung tissue model for functional studies on Mycobacterium tuberculosis infection. J. Vis. Exp. 104, doi:10.3791/53084 (2015).
  • 134 Hudock TA, Lackner AA, Kaushal D. Microdissection approaches in tuberculosis research. J. Med. Primatol. 43(5), 294–297 (2014). • This manuscript identifies how microdissection may become a more useful tool in studying Mtb infections in a variety of models.
  • 135 Seimon TA, Kim MJ, Blumenthal A et al. Induction of ER stress in macrophages of tuberculosis granulomas. PLoS ONE 5(9), e12772 (2010).
  • 136 Bergeron A, Bonay M, Kambouchner M et al. Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J. Immunol. 159(6), 3034–3043 (1997).
  • 137 Schauf V, Rom WN, Smith KA et al. Cytokine gene activation and modified responsiveness to interleukin-2 in the blood of tuberculosis patients. J. Infect. Dis. 168(4), 1056–1059 (1993).
  • 138 Law K, Weiden M, Harkin T, Tchou-Wong K, Chi C, Rom WN. Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 153(2), 799–804 (1996).
  • 139 Tsao TC, Hong J, Huang C, Yang P, Liao SK, Chang KS. Increased TNF-alpha, IL-1 beta and IL-6 levels in the bronchoalveolar lavage fluid with the upregulation of their mRNA in macrophages lavaged from patients with active pulmonary tuberculosis. Tuber. Lung Dis. 79(5), 279–285 (1999).
  • 140 Nau GJ, Guilfoile P, Chupp GL et al. A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis. Proc. Natl Acad. Sci. USA 94(12), 6414–6419 (1997).