We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies

    Steven E Lipshultz

    * Author for correspondence

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA.

    ,
    Thomas R Cochran

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    David A Briston

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Stefanie R Brown

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Peter J Sambatakos

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Tracie L Miller

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA

    ,
    Adriana A Carrillo

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Liat Corcia

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Janine E Sanchez

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Melissa B Diamond

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Michael Freundlich

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Danielle Harake

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Tamara Gayle

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    William G Harmon

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Paolo G Rusconi

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    ,
    Satinder K Sandhu

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    &
    James D Wilkinson

    Department of Pediatrics, University of Miami Miller School of Medicine, 1601 NW 12th Avenue, 9th Floor, Miami, FL 33136, USA

    Holtz Children’s Hospital of the University of Miami/Jackson Memorial Medical Center & Sylvester Comprehensive Cancer Center, Miami, FL, USA

    Published Online:https://doi.org/10.2217/fca.13.66

    Pediatric cardiomyopathies, which are rare but serious disorders of the muscles of the heart, affect at least one in every 100,000 children in the USA. Approximately 40% of children with symptomatic cardiomyopathy undergo heart transplantation or die from cardiac complications within 2 years. However, a significant number of children suffering from cardiomyopathy are surviving into adulthood, making it an important chronic illness for both pediatric and adult clinicians to understand. The natural history, risk factors, prevalence and incidence of this pediatric condition were not fully understood before the 1990s. Questions regarding optimal diagnostic, prognostic and treatment methods remain. Children require long-term follow-up into adulthood in order to identify the factors associated with best clinical practice including diagnostic approaches, as well as optimal treatment approaches. In this article, we comprehensively review current research on various presentations of this disease, along with current knowledge about their causes, treatments and clinical outcomes.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Wilkinson JD, Sleeper LA, Alvarez JA, Bublik N, Lipshultz SE; for the Pediatric Cardiomyopathy Study Group. The pediatric cardiomyopathy registry: 1995–2007. Prog. Pediatr. Cardiol.25(1),31–36 (2008).
    • Lipshultz SE, Sleeper LA, Towbin JA et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N. Engl. J. Med.348(17),1647–1655 (2003).▪ Found that the incidence of cardiomyopathy was significantly higher in children younger than 1 year old. The estimated incidence of pediatric cardiomyopathy was determined to be 1.13 cases per 100,000 children. Incidence varied according to sex, region and racial origin.
    • Bublik N, Alvarez JA, Lipshultz SE. Pediatric cardiomyopathy as a chronic disease: a perspective on comprehensive care programs. Prog. Pediatr. Cardiol.25(1),103–111 (2008).
    • Alvarez JA, Wilkinson JD, Lipshultz SE; for the Pediatric Cardiomyopathy Registry Study Group. Outcome predictors for pediatric dilated cardiomyopathy: a systematic review. Prog. Pediatr. Cardiol.23(1),25–32 (2007).
    • Towbin JA, Lowe AM, Colan SD et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA296(15),1867–1876 (2006).▪▪ Found that the annual incidence of dilated cardiomyopathy in children younger than 18 years of age was 0.57 cases per 100,000. It also found that annual incidence was higher in boys than girls. The majority of children had idiopathic disease, with the most common causes being myocarditis and neuromuscular disease.
    • Towbin JA, Sleeper LA, Lowe AM et al. Etiology, incidence, and outcome of dilated cardiomyopathy in children: the pediatric cardiomyopathy registry experience. JAMA296(15),1867–1876 (2006).
    • Fisher SD, Easley KA, Orav EJ et al. Mild dilated cardiomyopathy and increased left ventricular mass predict mortality: the prospective P2C2 HIV multicenter study. Am. Heart J.150(3),439–447 (2005).
    • Lipshultz SE. Dilated cardiomyopathy in HIV-infected patients. N. Engl. J. Med.339(16),1153–1155 (1998).
    • Lipshultz SE, Colan SD, Gelber RD et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med.324,808–815 (1991).
    • 10  Lipshultz SE, Lipsitz SR, Sallan SE et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J. Clin. Oncol.23,2629–2636 (2005).▪▪ Examined the course of left ventricular structure and function. Found that after 11.8 years, abnormalities of cardiac structure and function were persistent and progressive in children diagnosed with acute lymphoblastic leukemia treated with any amount of doxorubicin, but were particularly worse in children who received more than 300 mg/m2.
    • 11  Singh TP, Sleeper LA, Lipshultz SE et al. Association of left ventricular dilation at listing for heart transplant with post-listing and early post-transplant mortality in children with dilated cardiomyopathy. Circ. Heart Fail.2(6),591–598 (2009).
    • 12  Kantor PF, Orav EJ, Wilkinson JD et al. Progressive left ventricular changes predict the likelihood of survival in pediatric dilated cardiomyopathy: findings from the pediatric cardiomyopathy registry. Presented at: ACC Scientific Sessions. Chicago, IL, USA, 24–27 March 2012.
    • 13  Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol.35(3),569–582 (2000).
    • 14  Rusconi PG, Ludwig DA, Ratnasamy C et al. Serial measurements of serum NT-proBNP as markers of left ventricular systolic function and remodeling in children with heart failure. Am. Heart J.160(4),776–783 (2010).
    • 15  Harmon WG, Sleeper LA, Cuniberti L et al. Treating children with idiopathic dilated cardiomyopathy (from the Pediatric Cardiomyopathy Registry). Am. J. Cardiol.104(2),281–286 (2009).
    • 16  Harmon WG, Sleeper LA, Cuniberti L et al. Practice patterns in treating children with dilated cardiomyopathy: findings from the North American Pediatric Cardiomyopathy Registry. Am. J. Cardiol.104(2),281–286 (2009).
    • 17  Alvarez JA, Orav EJ, Wilkinson JD et al. Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the Pediatric Cardiomyopathy Registry. Circulation124(7),814–823 (2011).
    • 18  Connuck DM, Sleeper LA, Colan SD et al. Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: A comparative study from the Pediatric Cardiomyopathy Registry. Am. Heart J.155(6),998–1005 (2008).
    • 19  Wilkinson JD, Landy DC, Colan SD et al. The Pediatric Cardiomyopathy Registry and heart failure: key results from the first 15 years. Heart Fail. Clin.6(4),401–413 (2010).
    • 20  Miyamoto SD, Stauffer BL, Nakano S et al. Beta-adrenergic adaptation in paediatric idiopathic dilated cardiomyopathy. Eur. Heart J. doi:10.1093/eurheartj/ehs229 (2012) (Epub ahead of print).
    • 21  Lipshultz SE, Wilkinson JD. Beta-adrenergic adaptation in idiopathic dilated cardiomyopathy presenting in pediatric patients contrasted with adult presentations. Eur. Heart J. doi:10.1093/eurheartj/ehs402 (2012) (Epub ahead of print).
    • 22  Pahl E, Sleeper LA, Canter CE et al. Incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry. J. Am. Coll. Cardiol.59(6),607–615 (2012).
    • 23  Larsen RL, Canter CE, Naftel DC et al. The impact of heart failure severity at time of listing for cardiac transplantation on survival in pediatric cardiomyopathy. J. Heart Lung Transplant.30(7),755–760 (2011).
    • 24  Tsirka AE, Trinkaus K, Chen SC et al. Improved outcomes of pediatric dilated cardiomyopathy with utilization of cardiac transplantation. J. Am. Coll. Cardiol.44(2),391–397 (2004).
    • 25  Foerster SR, Canter CE, Cinar A et al. Ventricular remodeling and survival are more favorable for myocarditis than for idiopathic dilated cardiomyopathy in childhood: an outcomes study from the Pediatric Cardiomyopathy Registry. Circ. Heart Fail.3(6),689–697 (2010).
    • 26  Pietra BA, Kantor PF, Bartlett HL et al. Early predictors of survival to and after heart transplantation in children with dilated cardiomyopathy. Circulation126(9),1079–1086 (2012).
    • 27  Gersh BJ, Maron BJ, Bonow RO et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation124(24),2761–2796 (2011).
    • 28  Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J. Am. Coll. Cardiol.26(7),1699–1708 (1995).
    • 29  Maskatia SA. Hypertrophic cardiomyopathy: infants, children, and adolescents. Congenit. Heart Dis.7(1),84–92 (2012).
    • 30  Decker JA, Rossano JW, Smith EO et al. Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J. Am. Coll. Cardiol.54(3),250–254 (2009).
    • 31  Colan SD, Lipshultz SE, Lowe AM et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the Pediatric Cardiomyopathy Registry. Circulation115(6),773–781 (2007).
    • 32  Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J. Am. Coll. Cardiol.60(8),705–715 (2012).
    • 33  Botvinick EH, Dae MW, Krishnan R, Ewing S. Hypertrophic cardiomyopathy in the young: another form of ischemic cardiomyopathy? J. Am. Coll. Cardiol.22(3),805–807 (1993).
    • 34  Garson A Jr. Sudden death in the young. Hosp. Pract. (Off. Ed.)26(6),51–60 (1991).
    • 35  Gow RM. Sudden cardiac death in the young. Can. J. Cardiol.12(11),1157–1160 (1996).
    • 36  Liberthson RR. Sudden death from cardiac causes in children and young adults. N. Engl. J. Med.334(16),1039–1044 (1996).
    • 37  Driscoll DJ, Edwards WD. Sudden unexpected death in children and adolescents. J. Am. Coll. Cardiol.5(Suppl. 6),B118–B121 (1985).
    • 38  Lipshultz SE, Orav EJ, WIkinson JD et al. A risk stratification analysis of predictors of death or transplant in children with hypertrophic cardiomyopathy. Circulation118,S964, Abstract 4956 (2008).
    • 39  Cox GF, Sleeper LA, Lowe AM et al. Factors associated with establishing a causal diagnosis for children with cardiomyopathy. Pediatrics118(4),1519–1531 (2006).
    • 40  Ho CY. New paradigms in hypertrophic cardiomyopathy: insights from genetics. Prog. Pediatr. Cardiol.31(2),93–98 (2011).
    • 41  Wilkinson JD, Lowe AM, Salbert BA et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am. Heart J.164(3),442–448 (2012).▪▪ Compared children with Noonan syndrome and hypertrophic cardiomyopathy with children with idiopathic or familial hypertrophic cardiomyopathy. Found that children who had Noonan syndrome with hypertrophic syndrome had worse risk profiles. The authors suggested that an aggressive therapeutic approach, potentially including listing for cardiac transplantation, may be warrented.
    • 42  Webber SA, Lipshultz SE, Sleeper LA et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation126(10),1237–1244 (2012).▪▪ Analyzed outcomes of children from the Pediatric Cardiomyopathy Registry with restrictive cardiomyopathy, with a focus on the impact of phenotype. Survival was found to be independent of phenotype, although children with the mixed restrictive cardiomyopathy and hypertrophic cardiomyopathy had significantly better transplant-free survival, whereas children with pure restrictive cardiomyopathy had worse transplant-free survival.
    • 43  Maron BJ, Douglas PS, Graham TP, Nishimura RA, Thompson PD. Task Force 1: preparticipation screening and diagnosis of cardiovascular disease in athletes. J. Am. Coll. Cardiol.45(8),1322–1326 (2005).
    • 44  Ostman-Smith I, Wettrell G, Riesenfeld T. A cohort study of childhood hypertrophic cardiomyopathy: improved survival following high-dose beta-adrenoceptor antagonist treatment. J. Am. Coll. Cardiol.34(6),1813–1822 (1999).
    • 45  Ostman-Smith I. Hypertrophic cardiomyopathy in childhood and adolescence – strategies to prevent sudden death. Fund. Am. Clin. Pharmacol.24(5),637–652 (2010).
    • 46  Theodoro DA, Danielson GK, Feldt RH, Anderson BJ. Hypertrophic obstructive cardiomyopathy in pediatric patients: results of surgical treatment. J. Thorac. Cardiovasc. Surg.112(6),1589–1597; discussion 1597–1589 (1996).
    • 47  Moss AJ, Hall WJ, Cannom DS et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N. Engl. J. Med.335(26),1933–1940 (1996).
    • 48  Lenarczyk R, Kowalski O, Kukulski T, Kowalczyk J, Kalarus Z. Resynchronization or dyssynchronization – successful treatment with biventricular stimulation of a child with obstructive hypertrophic cardiomyopathy without dyssynchrony. J. Cardiovasc. Electrophysiol.18(5),542–544 (2007).
    • 49  Spirito P, Autore C, Rapezzi C et al. Syncope and risk of sudden death in hypertrophic cardiomyopathy. Circulation119(13),1703–1710 (2009).
    • 50  Dadlani GH, Harmon WG, Perez-Colon E, Sokoloski MC, Wilmot I, Lipshultz SE. Diagnosis and screening of hypertrophic cardiomyopathy in children. Prog. Pediatr. Cardiol.31(1),21–27 (2011).
    • 51  Rodday AM, Triedman JK, Alexander ME et al. Electrocardiogram screening for disorders that cause sudden cardiac death in asymptomatic children: a meta-analysis. Pediatrics129(4),e999–e1010 (2012).
    • 52  Maron BJ, Zipes DP. 36th Bethesda Conference: eligibility recommendataions for competitive atheletes with cardiovascular abnormalities. J. Am. Coll. Cardiol.45(8),1313–1375 (2005).
    • 53  Maron BJ, Towbin JA, Thiene G et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation113(14),1807–1816 (2006).
    • 54  Chen SC, Balfour IC, Jureidini S. Clinical spectrum of restrictive cardiomyopathy in children. J. Heart Lung Transplant.20(1),90–92 (2001).
    • 55  Keren A, Popp RL. Assignment of patients into the classification of cardiomyopathies. Circulation86(5),1622–1633 (1992).
    • 56  Russo LM, Webber SA. Idiopathic restrictive cardiomyopathy in children. Heart91(9),1199–1202 (2005).
    • 57  Denfield SW, Rosenthal G, Gajarski RJ et al. Restrictive cardiomyopathies in childhood. Etiologies and natural history. Tex. Heart Inst. J.24(1),38–44 (1997).
    • 58  Mogensen J, Kubo T, Duque M et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest.111(2),209–216 (2003).
    • 59  Angelini A, Calzolari V, Thiene G et al. Morphologic spectrum of primary restrictive cardiomyopathy. Am. J. Cardiol.80(8),1046–1050 (1997).
    • 60  Feld S, Caspi A. Familial cardiomyopathy with variable hypertrophic and restrictive features and common HLA haplotype. Isr. J. Med. Sci.28(5),277–280 (1992).
    • 61  Arbustini E, Morbini P, Grasso M et al. Restrictive cardiomyopathy, atrioventricular block and mild to subclinical myopathy in patients with desmin-immunoreactive material deposits. J. Am. Coll. Cardiol.31(3),645–653 (1998).
    • 62  Bergman JE, Veenstra-Knol HE, Van Essen AJ et al. Two related Dutch families with a clinically variable presentation of cardioskeletal myopathy caused by a novel S13F mutation in the desmin gene. Eur. J. Med. Genet.50(5),355–366 (2007).
    • 63  Kaminska A, Strelkov SV, Goudeau B et al. Small deletions disturb desmin architecture leading to breakdown of muscle cells and development of skeletal or cardioskeletal myopathy. Hum. Genet.114(3),306–313 (2004).
    • 64  Li D, Tapscoft T, Gonzalez O et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation100(5),461–464 (1999).
    • 65  Silva CP, Bacal F, Benvenuti LA, Bocchi EA. Desmin-related restrictive cardiomyopathy. Arg. Bras. Cardiol.89(6),165–168 (2007).
    • 66  Lubitz SA, Goldbarg SH, Mehta D. Sudden cardiac death in infiltrative cardiomyopathies: sarcoidosis, scleroderma, amyloidosis, hemachromatosis. Prog. Cardiovasc. Dis.51(1),58–73 (2008).
    • 67  Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N. Engl. J. Med.336(4),267–276 (1997).
    • 68  Filopei J, Frishman W. Radiation-induced heart disease. Cardiol. Rev.20(4),184–188 (2012).
    • 69  Bakalli A, Georgievska-Ismail L, Kocinaj D et al. Left ventricular and left atrial thrombi in sinus rhythm patients with dilated ischemic cardiomyopathy. Med. Arh.66(3),155–158 (2012).
    • 70  Hirota Y, Kohriyama T, Hayashi T et al. Idiopathic restrictive cardiomyopathy: differences of left ventricular relaxation and diastolic wave forms from constrictive pericarditis. Am. J. Cardiol.52(3),421–423 (1983).
    • 71  Meaney E, Shabetai R, Bhargava V et al. Cardiac amyloidosis, contrictive pericarditis and restrictive cardiomyopathy. Am. J. Cardiol.38(5),547–556 (1976).
    • 72  Kantor PF, Rusconi P, Lipshultz S, Mital S, Wilkinson JD, Burch M. Current applications and future needs for biomarkers in pediatric cardiomyopathy and heart failure: summary from the second international conference on pediatric cardiomyopathy. Prog. Pediatr. Cardiol.32(1),11–14 (2011).
    • 73  Leya FS, Arab D, Joyal D et al. The efficacy of brain natriuretic peptide levels in differentiating constrictive pericarditis from restrictive cardiomyopathy. J. Am. Coll. Cardiol.45(11),1900–1902 (2005).
    • 74  Babuin L, Alegria JR, Oh JK, Nishimura RA, Jaffe AS. Brain natriuretic peptide levels in constrictive pericarditis and restrictive cardiomyopathy. J. Am. Coll. Cardiol.47(7),1489–1491 (2006).
    • 75  Sengupta PP, Krishnamoorthy VK, Abhayaratna WP et al. Comparison of usefulness of tissue Doppler imaging versus brain natriuretic peptide for differentiation of constrictive pericardial disease from restrictive cardiomyopathy. Am. J. Cardiol.102(3),357–362 (2008).
    • 76  Kaski JP, Syrris P, Burch M et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart94(11),1478–1484 (2008).
    • 77  Rivenes SM, Kearney DL, Smith EO, Towbin JA, Denfield SW. Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. Circulation102(8),876–882 (2000).
    • 78  Kubo T, Gimeno JR, Bahl A et al. Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J. Am. Coll. Cardiol.49(25),2419–2426 (2007).
    • 79  Ammash NM, Seward JB, Bailey KR, Edwards WD, Tajik AJ. Clinical profile and outcome of idiopathic restrictive cardiomyopathy. Circulation101(21),2490–2496 (2000).
    • 80  Cetta F, O’Leary PW, Seward JB, Driscoll DJ. Idiopathic restrictive cardiomyopathy in childhood: diagnostic features and clinical course. Mayo Clin. Proc.70(7),634–640 (1995).
    • 81  Pignatelli RH, Mcmahon CJ, Dreyer WJ et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation108(21),2672–2678 (2003).
    • 82  Tsai SF, Ebenroth ES, Hurwitz RA, Cordes TM, Schamberger MS, Batra AS. Is left ventricular noncompaction in children truly an isolated lesion? Pediatr. Cardiol.30(5),597–602 (2009).
    • 83  Wald R, Veldtman G, Golding F, Kirsh J, McCrindle B, Benson L. Determinants of outcome in isolated ventricular noncompaction in childhood. Am. J. Cardiol.94(12),1581–1584 (2004).
    • 84  Jenni R, Rojas J, Oechslin E. Isolated noncompaction of the myocardium. N. Engl. J. Med.340(12),966–967 (1999).
    • 85  Ergul Y, Nisli K, Demirel A et al. Left ventricular non-compaction in children and adolescents: clinical features, treatment and follow-up. Cardiol. J.18(2),176–184 (2011).
    • 86  Dusek J, Ostadal B, Duskova M. Postnatal persistence of spongy myocardium with embryonic blood supply. Arch. Pathol.99(6),312–317 (1975).
    • 87  Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat. Rec.258(4),319–337 (2000).
    • 88  Towbin JA. Left ventricular noncompaction: a new form of heart failure. Heart Fail. Clin.6(4),453–469 (2010).
    • 89  Martinez-Baca Lopez F, Alonso Bravo RM, Rodriguez Huerta DA. Echocardiographic features of non-compaction cardiomyopathy: missed and misdiagnosed disease. Arq. Bras. Cardiol.93(2),e33–e35 (2009).
    • 90  Ozgur S, Senocak F, Orun UA et al. Ventricular non-compaction in children: clinical characteristics and course. Interact. Cardiovasc. Thorac. Surg.12(3),370–373 (2011).
    • 91  Murphy RT, Thaman R, Blanes JG et al. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur. Heart J.26(2),187–192 (2005).
    • 92  Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation82(2),507–513 (1990).
    • 93  Rosa LV, Salemi VM, Alexandre LM, Mady C. Noncompaction cardiomyopathy: a current view. Arq. Bras. Cardiol.97(1),e13–e19 (2011).
    • 94  Zuckerman WA, Richmond ME, Singh RK, Carroll SJ, Starc TJ, Addonizio LJ. Left-ventricular noncompaction in a pediatric population: predictors of survival. Pediatr. Cardiol.32(4),406–412 (2011).
    • 95  Richards A, Mao CY, Dobson NR. Left ventricular noncompaction: a rare cause of hydrops fetalis. Pediatr. Cardiol.30(7),985–988 (2009).
    • 96  Ichida F, Tsubata S, Bowles KR et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation103(9),1256–1263 (2001).
    • 97  Sasse-Klaassen S, Probst S, Gerull B et al. Novel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15. Circulation109(22),2720–2723 (2004).
    • 98  Vatta M, Mohapatra B, Jimenez S et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol.42(11),2014–2027 (2003).
    • 99  Weiford BC, Subbarao VD, Mulhern KM. Noncompaction of the ventricular myocardium. Circulation109(24),2965–2971 (2004).
    • 100  Jenni R, Oechslin EN, Van Der Loo B. Isolated ventricular non-compaction of the myocardium in adults. Heart93(1),11–15 (2007).
    • 101  Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol.36(2),493–500 (2000).
    • 102  Ichida F. Left ventricular noncompaction. Circ. J.73(1),19–26 (2009).
    • 103  Yasukawa K, Terai M, Honda A, Kohno Y. Isolated noncompaction of ventricular myocardium associated with fatal ventricular fibrillation. Pediatr. Cardiol.22(6),512–514 (2001).
    • 104  Ichida F, Hamamichi Y, Miyawaki T et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J. Am. Coll. Cardiol.34(1),233–240 (1999).
    • 105  Hamamichi Y, Ichida F, Hashimoto I et al. Isolated noncompaction of the ventricular myocardium: ultrafast computed tomography and magnetic resonance imaging. Int. J. Cardiovasc. Imaging17(4),305–314 (2001).
    • 106  Saito K, Ibuki K, Yoshimura N et al. Successful cardiac resynchronization therapy in a 3-year-old girl with isolated left ventricular non-compaction and narrow QRS complex: a case report. Circ. J.73(11),2173–2177 (2009).
    • 107  Lofiego C, Biagini E, Pasquale F et al. Wide spectrum of presentation and variable outcomes of isolated left ventricular non-compaction. Heart93(1),65–71 (2007).
    • 108  Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med.344(7),501–509 (2001).
    • 109  Cavallo A, Joseph CJ, Casta A. Cardiac complications in juvenile hyperthyroidism. Am. J. Dis. Child.138(5),479–482 (1984).
    • 110  Cavallo A, Casta A, Fawcett HD, Nusynowitz ML, Wolf WJ. Is there a thyrotoxic cardiomyopathy in children? J. Pediatr.107(4),531–536 (1985).
    • 111  Gilbert-Barness E. Review: metabolic cardiomyopathy and conduction system defects in children. Ann. Clin. Lab. Sci.34(1),15–34 (2004).
    • 112  Jain V, Kannan L, Kumar P. Congenital hypopituitarism presenting as dilated cardiomyopathy in a child. J. Pediatr. Endocrinol. Metab.24(9–10),767–769 (2011).
    • 113  Khochtali I, Hamza N, Harzallah O et al. Reversible dilated cardiomyopathy caused by hypothyroidism. Int. Arch. Med.4,20 (2011).
    • 114  Micallef T, Gruppetta M, Cassar A, Fava S. Takotsubo cardiomyopathy and severe hypothyroidism. J. Cardiovasc. Med. (Hagerstown)12(11),824–827 (2011).
    • 115  McElhinney DB, Colan SD, Moran AM et al. Recombinant human growth hormone treatment for dilated cardiomyopathy in children. Pediatrics114(4),e452–e458 (2004).
    • 116  Lipshultz SE, Vlach SA, Lipsitz SR, Sallan SE, Schwartz ML, Colan SD. Cardiac changes associated with growth hormone therapy among children treated with anthracyclines. Pediatrics115(6),1613–1622 (2005).▪ Analyzed serial cardiac findings of anthracycline-treated childhood cancer survivors with several years of growth hormone therapy. Left ventricular contractility was decreased in patients who received growth hormone therapy before, during and after treatment. Although growth hormone therapy increased the wall thickness of the left ventricle, this effect was lost shortly after growth hormone therapy ended.
    • 117  Ibe W, Saraste A, Lindemann S et al. Cardiomyocyte apoptosis is related to left ventricular dysfunction and remodelling in dilated cardiomyopathy, but is not affected by growth hormone treatment. Eur. J. Heart Fail.9(2),160–167 (2007).
    • 118  Kobayashi D, Cook AL, Williams DA. Progressively worsening hypertrophic cardiomyopathy in a child with newly diagnosed Costello syndrome while receiving growth hormone therapy. Cardiol. Young20(4),459–461 (2010).
    • 119  Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev.17(3),325–344 (2012).
    • 120  Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy – fact or fiction? Herz36(2),102–115 (2011).
    • 121  Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF. The diabetic cardiomyopathy. Acta Diabetol.48(3),173–181 (2011).
    • 122  Von Bibra H, St John Sutton M. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia53(6),1033–1045 (2010).
    • 123  Grandi AM, Piantanida E, Franzetti I et al. Effect of glycemic control on left ventricular diastolic function in Type 1 diabetes mellitus. Am. J. Cardiol.97(1),71–76 (2006).
    • 124  Suys BE, Katier N, Rooman RP et al. Female children and adolescents with Type 1 diabetes have more pronounced early echocardiographic signs of diabetic cardiomyopathy. Diabetes Care27(8),1947–1953 (2004).
    • 125  Salem M, El Behery S, Adly A, Khalil D, El Hadidi E. Early predictors of myocardial disease in children and adolescents with Type 1 diabetes mellitus. Pediatr. Diabetes10(8),513–521 (2009).
    • 126  Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology. Nat. Clin. Pract. Cardiovasc. Med.4(8),436–443 (2007).
    • 127  Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation67(5),968–977 (1983).
    • 128  Mehta SK, Holliday C, Hayduk L, Wiersma L, Richards N, Younoszai A. Comparison of myocardial function in children with body mass indexes >/=25 versus those <25 kg/m2 . Am. J. Cardiol.93(12),1567–1569 (2004).
    • 129  Obert P, Gueugnon C, Nottin S et al. Two-dimensional strain and twist by vector velocity imaging in adolescents with severe obesity. Obesity (Silver Spring)20(12),2397–2405 (2012).
    • 130  Unger RH. Lipotoxic disease. Annu. Rev. Med.53,319–336 (2002).
    • 131  Qureshi MY, Wilkinson JD, Lipshultz SE. The relationship of childhood obesity with cardiomyopathy and heart failure. In: Pediatric Metabolic Syndrome Comprehensive Clinical Review and Related Health Issues, Lipshultz SE, Messiah SE, Miller TL (Eds). Springer-Verlag, London, UK, 199–215 (2012).
    • 132  Schrier RW. Cardiorenal versus renocardiac syndrome: is there a difference? Nat. Clin. Pract. Nephrol.3(12),637 (2007).
    • 133  Anavekar NS, Mcmurray JJ, Velazquez EJ et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N. Engl. J. Med.351(13),1285–1295 (2004).
    • 134  Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis.32(5 Suppl. 3),S112–S119 (1998).
    • 135  Parekh RS, Carroll CE, Wolfe RA, Port FK. Cardiovascular mortality in children and young adults with end-stage kidney disease. J. Pediatr.141(2),191–197 (2002).
    • 136  Shroff R, Weaver DJ Jr, Mitsnefes MM. Cardiovascular complications in children with chronic kidney disease. Nat. Rev. Nephrol.7(11),642–649 (2011).
    • 137  Mitsnefes MM, Barletta GM, Dresner IG et al. Severe cardiac hypertrophy and long-term dialysis: the Midwest Pediatric Nephrology Consortium study. Pediatr. Nephrol.21(8),1167–1170 (2006).
    • 138  Gruppen MP, Groothoff JW, Prins M et al. Cardiac disease in young adult patients with end-stage renal disease since childhood: a Dutch cohort study. Kidney Int.63(3),1058–1065 (2003).
    • 139  Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int.36(2),286–290 (1989).
    • 140  Chavers BM, Li S, Collins AJ, Herzog CA. Cardiovascular disease in pediatric chronic dialysis patients. Kidney Int.62(2),648–653 (2002).
    • 141  Maron BJ. Sudden death in young athletes. N. Engl. J. Med.349(11),1064–1075 (2003).
    • 142  Amann K, Tyralla K, Gross ML et al. Cardiomyocyte loss in experimental renal failure: prevention by ramipril. Kidney Int.63(5),1708–1713 (2003).
    • 143  Tyralla K, Adamczak M, Benz K et al. High-dose enalapril treatment reverses myocardial fibrosis in experimental uremic cardiomyopathy. PLoS ONE6(1),e15287 (2011).
    • 144  Ritz E. Left ventricular hypertrophy in renal disease: beyond preload and afterload. Kidney Int.75(8),771–773 (2009).
    • 145  Pilz S, Tomaschitz A, Marz W et al. Vitamin D, cardiovascular disease and mortality. Clin. Endocrinol. (Oxf.)75(5),575–584 (2011).
    • 146  Hsu HJ, Wu MS. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am. J. Med. Sci.337(2),116–122 (2009).
    • 147  Gutierrez OM, Januzzi JL, Isakova T et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation119(19),2545–2552 (2009).
    • 148  Holick MF. Vitamin D deficiency. N. Engl. J. Med.357(3),266–281 (2007).
    • 149  Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am. J. Physiol. Renal Physiol.289(1),F8–F28 (2005).
    • 150  Tishkoff DX, Nibbelink KA, Holmberg KH, Dandu L, Simpson RU. Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility. Endocrinology149(2),558–564 (2008).
    • 151  Seeherunvong W, Abitbol CL, Chandar J, Zilleruelo G, Freundlich M. Vitamin D insufficiency and deficiency in children with early chronic kidney disease. J. Pediatr.154(6),906–911 e901 (2009).
    • 152  Wolf M, Shah A, Gutierrez O et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int.72(8),1004–1013 (2007).
    • 153  Maiya S, Sullivan I, Allgrove J et al. Hypocalcaemia and vitamin D deficiency: an important, but preventable, cause of life-threatening infant heart failure. Heart94(5),581–584 (2008).
    • 154  Melamed ML, Michos ED, Post W, Astor B. 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch. Intern. Med.168(15),1629–1637 (2008).
    • 155  Pilz S, Iodice S, Zittermann A, Grant WB, Gandini S. Vitamin D status and mortality risk in CKD: a meta-analysis of prospective studies. Am. J. Kidney Dis.58(3),374–382 (2011).
    • 156  Sun Q, Shi L, Rimm EB et al. Vitamin D intake and risk of cardiovascular disease in US men and women. Am. J. Clin. Nutr.94(2),534–542 (2011).
    • 157  Wang L, Manson JE, Song Y, Sesso HD. Systematic review: vitamin D and calcium supplementation in prevention of cardiovascular events. Ann. Intern. Med.152(5),315–323 (2010).
    • 158  Levin A, Bakris GL, Molitch M et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int.71(1),31–38 (2007).
    • 159  Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N. Engl. J. Med.349(5),446–456 (2003).
    • 160  Kovesdy CP. Survival benefits with vitamin D receptor activation: new insights since 2003. Clin. J. Am. Soc. Nephrol.5(9),1704–1709 (2010).
    • 161  Kim HW, Park CW, Shin YS et al. Calcitriol regresses cardiac hypertrophy and QT dispersion in secondary hyperparathyroidism on hemodialysis. Nephron Clin. Pract.102(1),c21–c29 (2006).
    • 162  Mizobuchi M, Nakamura H, Tokumoto M et al. Myocardial effects of VDR activators in renal failure. J. Steroid Biochem. Mol. Biol.121(1–2),188–192 (2010).
    • 163  Thadhani R, Appelbaum E, Pritchett Y et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA 307(7),674–684 (2012).
    • 164  Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin–angiotensin system. J. Clin. Invest.110(2),229–238 (2002).
    • 165  Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: a negative endocrine regulator of the renin–angiotensin system and blood pressure. J. Steroid Biochem. Mol. Biol.89–90(1–5),387–392 (2004).
    • 166  Xiang W, Kong J, Chen S et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin–angiotensin systems. Am. J. Physiol. Endocrinol. Metab.288(1),e125–e132 (2005).
    • 167  Bodyak N, Ayus JC, Achinger S et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc. Natl Acad. Sci. USA104(43),16810–16815 (2007).
    • 168  Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin–angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int.74(2),170–179 (2008).
    • 169  Yuan W, Pan W, Kong J et al. 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J. Biol. Chem.282(41),29821–29830 (2007).
    • 170  Fryer RM, Rakestraw PA, Nakane M et al. Differential inhibition of renin mRNA expression by paricalcitol and calcitriol in C57/BL6 mice. Nephron Physiol.106(4),76–81 (2007).
    • 171  Li YC. Vitamin D: roles in renal and cardiovascular protection. Curr. Opin. Nephrol. Hypertens.21(1),72–79 (2012).
    • 172  Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin II. Role of an intracardiac renin–angiotensin system. Annu. Rev. Physiol.54,227–241 (1992).
    • 173  Freundlich M, Quiroz Y, Zhang Z et al. Suppression of renin–angiotensin gene expression in the kidney by paricalcitol. Kidney Int.74(11),1394–1402 (2008).
    • 174  Wollert KC, Drexler H. The renin–angiotensin system and experimental heart failure. Cardiovasc. Res.43(4),838–849 (1999).
    • 175  Hasegawa H, Nagano N, Urakawa I et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int.78(10),975–980 (2010).
    • 176  Gutierrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med.359(6),584–592 (2008).
    • 177  Wesseling-Perry K, Pereira RC, Wang H et al. Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J. Clin. Endocrinol. Metab.94(2),511–517 (2009).
    • 178  Isakova T, Xie H, Yang W et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305(23),2432–2439 (2011).
    • 179  Seeherunvong W, Abitbol CL, Chandar J, Rusconi P, Zilleruelo GE, Freundlich M. Fibroblast growth factor 23 and left ventricular hypertrophy in children on dialysis. Pediatr. Nephrol.27(11),2129–2136 (2012).
    • 180  Isakova T, Houston J, Santacruz L et al. Associations between fibroblast growth factor 23 and cardiac characteristics in pediatric heart failure. Pediatr. Nephrol. doi:10.1007/s00467-013-2515-7 (2013) (Epub ahead of print).
    • 181  Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA, Khoury P, Strife CF. Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors. Pediatr. Nephrol.14(10–11),898–902 (2000).
    • 182  Borzych D, Bakkaloglu SA, Zaritsky J et al. Defining left ventricular hypertrophy in children on peritoneal dialysis. Clin. J. Am. Soc. Nephrol.6(8),1934–1943 (2011).
    • 183  Daniels SR, Kimball TR, Morrison JA, Khoury P, Meyer RA. Indexing left ventricular mass to account for differences in body size in children and adolescents without cardiovascular disease. Am. J. Cardiol.76(10),699–701 (1995).
    • 184  Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J. Am. Soc. Echocardiogr.22(6),709–714 (2009).
    • 185  Bakkaloglu SA, Borzych D, Soo Ha I et al. Cardiac geometry in children receiving chronic peritoneal dialysis: findings from the International Pediatric Peritoneal Dialysis Network (IPPN) registry. Clin. J. Am. Soc. Nephrol.6(8),1926–1933 (2011).
    • 186  Hughes SE. Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J. Histochem. Cytochem.45(7),1005–1019 (1997).
    • 187  Liu L, Pasumarthi KB, Padua RR et al. Adult cardiomyocytes express functional high-affinity receptors for basic fibroblast growth factor. Am. J. Physiol.268(5 Pt 2),H1927–H1938 (1995).
    • 188  Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest.121(11),4393–4408 (2011).
    • 189  Freundlich M, Li YC, Weisinger JR, Quiroz Y, Bravo J, Rodriguez-Iturbe B. Paricalcitol downregulates myocardial renin–angiotensin and fibroblast growth factor expression and attenuates cardiac hypertrophy in uremic rats. Am. J. Hypertens. doi:10.1093/ajh/hpt177 (2013) (Epub ahead of print).
    • 190  Srivaths PR, Goldstein SL, Silverstein DM, Krishnamurthy R, Brewer ED. Elevated FGF-23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr. Nephrol.26(6),945–951 (2011).
    • 191  Desjardins L, Liabeuf S, Renard C et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos. Int.23(7),2017–2025 (2012).
    • 192  Razzaque MS. The FGF23–Klotho axis: endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol.5(11),611–619 (2009).
    • 193  Chen S, Gardner DG. Liganded vitamin D receptor displays anti-hypertrophic activity in the murine heart. J. Steroid Biochem. Mol. Biol.136,150–155 (2012).
    • 194  Davos CH, Doehner W, Rauchhaus M et al. Body mass and survival in patients with chronic heart failure without cachexia: the importance of obesity. J. Card. Fail.9(1),29–35 (2003).
    • 195  Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc.102(11),1621–1630 (2002).
    • 196  Monsen ER. Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J. Am. Diet. Assoc.100(6),637–640 (2000).
    • 197  Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its panel on folate, other B vitamins, and chlorine. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. In: The National Academies Collection: Reports Funded by National Institutes of Health. National Academies Press, DC, USA (1998).
    • 198  Electrolytes P.o.D.R.I.f., Water, and S.C.o.t.S.E.o.D.R. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. The National Academies Press, Washington, DC, USA (2005).
    • 199  Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc.101(3),294–301 (2001).
    • 200  Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; Food and Nutrition Board; Institute of Medicine. In: DRI Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press, DC, USA (1997).
    • 201  Broqvist M, Arnqvist H, Dahlstrom U, Larsson J, Nylander E, Permert J. Nutritional assessment and muscle energy metabolism in severe chronic congestive heart failure – effects of long-term dietary supplementation. Eur. Heart J.15(12),1641–1650 (1994).
    • 202  Sole MJ, Jeejeebhoy KN. Conditioned nutritional requirements: therapeutic relevance to heart failure. Herz27(2),174–178 (2002).
    • 203  Miller TL, Neri D, Extein J, Somarriba G, Strickman-Stein N. Nutrition in pediatric cardiomyopathy. Prog. Pediatr. Cardiol.24(1),59–71 (2007).
    • 204  Szasz T, Thakali K, Fink GD, Watts SW. A comparison of arteries and veins in oxidative stress: producers, destroyers, function, and disease. Exp. Biol. Med. (Maywood)232(1),27–37 (2007).
    • 205  Riccioni G, D’orazio N, Franceschelli S, Speranza L. Marine carotenoids and cardiovascular risk markers. Mar. Drugs9(7),1166–1175 (2011).
    • 206  Voutilainen S, Nurmi T, Mursu J, Rissanen TH. Carotenoids and cardiovascular health. Am. J. Clin. Nutr.83(6),1265–1271 (2006).
    • 207  Miwa K, Kishimoto C, Nakamura H et al. Serum thioredoxin and alpha-tocopherol concentrations in patients with major risk factors. Circ. J.69(3),291–294 (2005).
    • 208  Turan B, Vassort G. Vitamin E in oxidant stress-related cardiovascular pathologies: focus on experimental studies. Curr. Pharm. Des.17(21),2155–2169 (2011).
    • 209  Saremi A, Arora R. Vitamin E and cardiovascular disease. Am. J. Ther.17(3),e56–e65 (2010).
    • 210  Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL. Zinc and cardiovascular disease. Nutrition26(11–12),1050–1057 (2010).
    • 211  Strassburger M, Bloch W, Sulyok S et al. Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo. Free Radic. Biol. Med.38(11),1458–1470 (2005).
    • 212  Inge TH, Krebs NF, Garcia VF et al. Bariatric surgery for severely overweight adolescents: concerns and recommendations. Pediatrics114(1),217–223 (2004).
    • 213  Frustaci A, Sabbioni E, Fortaner S et al. Selenium- and zinc-deficient cardiomyopathy in human intestinal malabsorption: preliminary results of selenium/zinc infusion. Eur. J. Heart Fail.14(2),202–210 (2012).
    • 214  Kosar F, Sahin I, Taskapan C et al. Trace element status (Se, Zn, Cu) in heart failure. Anadolu. Kardiyol. Derg.6(3),216–220 (2006).
    • 215  Sirikonda NS, Patten WD, Phillips JR, Mullett CJ. Ketogenic diet: rapid onset of selenium deficiency-induced cardiac decompensation. Pediatr. Cardiol.33(5),834–838 (2012).
    • 216  Azuma J, Sawamura A, Awata N. Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ. J.56(1),95–99 (1992).
    • 217  Schaffer SW, Jong CJ, Ramila KC, Azuma J. Physiological roles of taurine in heart and muscle. J. Biomed Sci.17(Suppl. 1),S2 (2010).
    • 218  Ito T, Kimura Y, Uozumi Y et al. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J. Mol. Cell. Cardiol.44(5),927–937 (2008).
    • 219  Gesuete V, Ragni L, Picchio FM. The ‘big heart’ of carnitine. G. Ital. Cardiol. (Rome)11(9),703–705 (2010).
    • 220  Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet. J. Rare Dis.7(1),68 (2012).
    • 221  Baragou S, Pio M, Di Bernardo S et al. A cause of dilated cardiomyopathy in child: primary carnitine deficiency. Ann. Cardiol. Angeiol. (Paris) doi:10.1016/j.ancard.2011.12.006 (2011) (Epub ahead of print).
    • 222  Benzarouel D, Hasni K, Ashab H, El Hattaoui M. [A reversible cause of cardiomyopathy: hypocalcemia]. Ann. Cardiol. Angeiol. (Paris) doi:10.1016/j.ancard.2012.04.003 (2012) (Epub ahead of print).
    • 223  Vacek JL, Vanga SR, Good M, Lai SM, Lakkireddy D, Howard PA. Vitamin D deficiency and Supplementation and relation to cardiovascular health. Am. J. Cardiol.109(3),359–363 (2012).
    • 224  Verma S, Khadwal A, Chopra K, Rohit M, Singhi S. Hypocalcemia nutritional rickets: a curable cause of dilated cardiomyopathy. J. Trop. Pediatr.57(2),126–128 (2011).
    • 225  Cotran RM, Kumar V, Robbins SL. Robbin’s Pathologic Basis of Disease, 5th Edition. Michael B, Cohen MD (Eds). Elsevier, PA, USA (1994).