We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

The Micra Transcatheter Pacing System: past, present and the future

    Lin-Thiri Toon

    *Author for correspondence: Tel.: +44 (2) 380 777 222; Ext.: 3928;

    E-mail Address: linthiri.toon@nhs.net

    Cardiac Rhythm Management, University Hospital Southampton NHS Trust, Southampton, SO16 6YD, UK

    Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK

    &
    Paul R Roberts

    Cardiac Rhythm Management, University Hospital Southampton NHS Trust, Southampton, SO16 6YD, UK

    Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK

    Published Online:https://doi.org/10.2217/fca-2023-0093

    Leadless permanent pacemakers represent an important innovation in cardiac device developments. Although transvenous permanent pacemakers have become indispensable in managing bradyarrhythmia and saving numerous lives, the use of transvenous systems comes with notable risks tied to intravascular leads and subcutaneous pockets. This drawback has spurred the creation of leadless cardiac pacemakers. Within this analysis, we compile existing clinical literature and proceed to evaluate the efficacy and safety of the Micra Transcatheter Pacing System. We also delve into the protocols for addressing a malfunctioning or end-of-life Micra as well as device extraction. Lastly, we explore prospects in this domain, such as the emergence of entirely leadless cardiac resynchronization therapy-defibrillator devices.

    Plain language summary

    What is Micra?

    Micra is a type of leadless pacemaker. Leadless pacemakers are a relatively recent breakthrough in medical science. Regular pacemakers have wires that run into the heart and a battery tucked under the skin. They are crucial for treating slow heartbeats. However, they carry risks tied to the wire or batteries. The Micra is placed in the heart using a tiny cut near the groin. There is no wire left behind in the body. Using Micra can avoid the potential complications linked to regular pacemakers.

    Is Micra safe & effective?

    Scientists have found that Micra is effective in patients with appropriate heart rhythm issues. There seem to be fewer complications compared to the regular pacemakers.

    What does the future hold for Micra?

    There are concerns about what to do when the battery runs out. The technology and batteries in Micra are getting better. It is expected Micra will be used even more in the future.

    Tweetable abstract

    Leadless pacemaker: the future of bradyarrhythmia therapy? Promising clinical efficacy and safety parameters. MicraTM AV system providing AV synchronous pacing. Leadless atrial pacemakers underway. Future applications in entirely leadless CRT systems, modular configurations and the paediatric demographic are notably intriguing.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Udo EO, Zuithoff NP, van Hemel NM et al. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm 9, 728–735 (2012).
    • 2. Kirkfeldt RE, Johansen JB, Nohr EA, Jorgensen OD, Nielsen JC. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur. Heart J. 35(18), 1186–1194 (2014).
    • 3. Cantillon DJ, Exner DV, Badie N et al. Complications and health care costs associated with transvenous cardiac pacemakers in a nationwide assessment. JACC Clin. Electrophysiol. 3(11), 1296–1305 (2017).
    • 4. Vardas PE, Politopoulos C, Manios E et al. A miniature pacemaker introduced intravenously and implanted endocardially. preliminary findings from an experimental study. Eur. J. Card. Pacing Electrophysiol. 1, 27–30 (1991).
    • 5. Spickler JW, Rasor NS, Kezdi P et al. Totally self-contained intracardiac pacemaker. J. Electrocardiol. 3(3–4), 325–331 (1970).
    • 6. Reddy VY, Knops RE, Sperzel J et al. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129(14), 1466–1471 (2014).
    • 7. Lakkireddy D, Knops RE, Atwater B et al. A worldwide experience of the management of battery failures and chronic device retrieval of the Nanostim leadless pacemaker. Heart Rhythm 14(12), 1756–1763 (2017).
    • 8. Tjong FVY, Koop BE. The modular cardiac rhythm management system: the EMPOWER leadless pacemaker and the EMBLEM subcutaneous ICD. Herzschrittmacherther. Elektrophysiol. 29, 355–361 (2018).
    • 9. Han JJ. The Aveir leadless pacing system receives FDA approval. Artif. Organs 46(7), 1219–1220 (2022).
    • 10. Vatterott PJ, Eggen MD, Hilpisch KE et al. Implant, performance, and retrieval of an atrial leadless pacemaker in sheep. Heart Rhythm 18(2), 288–296 (2021).
    • 11. Rashtian M, Banker RS, Neuzil P et al. Preclinical safety and electrical performance of novel atrial leadless pacemaker with dual-helix fixation. Heart Rhythm 19(5), 776–781 (2022).
    • 12. Knops RE, Reddy VY, Ip JE et al. A dual-chamber leadless pacemaker. N. Engl. J. Med. 388(25), 2360–2370 (2023).
    • 13. Montemerlo E, Pozzi M, De Ceglia S et al. First-in-man fully leadless transvenous CRT-P with a transseptal implant of WISE-CRT® system and Micra® PM. Pacing Clin. Electrophysiol. 42(11), 1489–1492 (2019).
    • 14. Funasako M, Neuzil P, Dujka L et al. Successful implementation of a totally leadless biventricular pacing approach. Heart Rhythm Case Rep. 6(3), 153–157 (2019).
    • 15. Reddy VY, Miller MA, Neuzil P et al. Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT-LV study. J. Am. Coll. Cardiol. 69(17), 2119–2129 (2017).
    • 16. Carabelli A, Jabeur M, Jacon P et al. European experience with a first totally leadless cardiac resynchronization therapy pacemaker system. Europace 23(5), 740–747 (2021).
    • 17. Sidhu BS, Gould J, Porter B et al. Completely leadless cardiac resynchronization defibrillator system. JACC Clin. Electrophysiol. 6(5), 588–589 (2020).
    • 18. Reynolds D, Duray GZ, Omar R et al. A leadless intracardiac transcatheter pacing system. N. Engl. J. Med. 374(6), 533–541 (2016). • The original Micra Transcatheter Pacing Study that led to the US FDA approval of the Micra device.
    • 19. Chinitz L, Ritter P, Khelae SK et al. Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker: Results from the Micra atrioventricular feasibility studies. Heart Rhythm 15(9), 1363–1371 (2018). •• Study exploring the atrioventricular synchronous pacing possibility in the Micra device.
    • 20. Steinwender C, Khelae SK, Garweg C et al. Atrioventricular synchronous pacing using a leadless ventricular pacemaker: results from the MARVEL 2 Study. JACC Clin. Electrophysiol. 6(1), 94–106 (2020). • Explanation of using accelerometer signal and Micra atrioventricular synchronous pacing algorithm.
    • 21. Sheldon T, Escalante K, Fagan D. Device longevity and AV synchrony algorithm modelling of a leadless pacemaker family: a virtual patient analysis. Medtronic Data on File (2023).
    • 22. Medtronic Inc. Micra AV2and VR2Temporary Pacing System Device manual (2023). www.alzint.org/resource/world-alzheimer-report-2019/.
    • 23. El-Chami MF, Al-Samadi F, Clementy N et al. Updated performance of the Micra transcatheter pacemaker in the real-world setting: a comparison to the investigational study and a transvenous historical control. Heart Rhythm 15(12), 1800–1807 (2018). •• Results from the Micra TPS Post-Approval Registry, comparing with the results from the Micra investigational device exemption study and a transvenous historical control, showing the safety and efficacy of Micra over a longer follow-up period.
    • 24. Roberts PR, Clémenty N, Mondoly P et al. A leadless pacemaker in the real-world setting: patient profile and performance over time. J. Arrhythm 39(1), 1–9 (2023).
    • 25. Chinitz LA, El-Chami MF, Sagi V et al. Ambulatory atrioventricular synchronous pacing over time using a leadless ventricular pacemaker: primary results from the AccelAV study. Heart Rhythm 20(1), 46–54 (2023).
    • 26. Clementy N, Chinitz J, Marijon E et al. A leadless ventricular pacemaker providing atrioventricular synchronous pacing in the real-world setting: acute results from the Micra AV post-approval registry. Europace 25, euad122.392. (2023). •• Ongoing worldwide Micra AV Post-Approval Registry to assess the safety and effectiveness of the Micra AV system.
    • 27. Gammage MD, Lieberman RA, Yee R et al. Multi-center clinical experience with a lumenless, catheter-delivered, bipolar, permanent pacemaker lead: implant safety and electrical performance. Pacing Clin. Electrophysiol. 29(8), 858–865 (2006).
    • 28. Medtronic Inc. CapsureFix Novus 5076 Technical Manual. (2005).
    • 29. Gillis AM, Pürerfellner H, Israel CW et al. Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block. Pacing Clin. Electrophysiol. 29(7), 697–705 (2006).
    • 30. Shinbane JS, Colletti PM, Shellock FG. Magnetic resonance imaging in patients with cardiac pacemakers: era of ‘MR Conditional’ designs. J. Cardiovasc. Magn. Reson. 13(1), 63 (2011).
    • 31. Schwitter J, Kanal E, Schmitt M et al. Impact of the Advisa MRI pacing system on the diagnostic quality of cardiac MR images and contraction patterns of cardiac muscle during scans: Advisa MRI randomized clinical multicenter study results. Heart Rhythm 10(6), 864–872 (2013).
    • 32. Sweeney MO, Bank AJ, Nsah E et al. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N. Engl. J. Med. 357(10), 1000–1008 (2007).
    • 33. Duray GZ, Ritter P, El-Chami M et al. Long-term performance of a transcatheter pacing system: 12-month results from the Micra Transcatheter Pacing Study. Heart Rhythm 14(5), 702–709 (2017).
    • 34. Kobara S, Okamura A, Kato M et al. Severe tricuspid regurgitation with chordae tendinae rupture after leadless pacemaker implantation. Circ. J. 86(5), 880 (2022).
    • 35. Cirne F, Salehian O, Wright D. Beyond the wires: a case of leadless pacemaker-mediated tricuspid regurgitation. CASE 5(5), 318–324 (2021).
    • 36. Haeberlin A, Bartkowiak J, Brugger N et al. Evolution of tricuspid valve regurgitation after implantation of a leadless pacemaker: a single center experience, systematic review, and meta-analysis. J. Cardiovasc. Electrophysiol. 33(7), 1617–1627 (2022).
    • 37. Beurskens NEG, Tjong FVY, de Bruin-Bon RHA et al. Impact of leadless pacemaker therapy on cardiac and atrioventricular valve function through 12 months of follow-up. Circ. Arrhythm Electrophysiol. 12(5), e007124 (2019).
    • 38. Hai JJ, Mao Y, Zhen Z et al. Close proximity of leadless pacemaker to tricuspid annulus predicts worse tricuspid regurgitation following septal implantation. Circ. Arrhythm Electrophysiol. 14(5), e009530 (2021).
    • 39. Johansen JB, Jørgensen OD, Møller M et al. Infection after pacemaker implantation: infection rates and risk factors associated with infection in a population-based cohort study of 46299 consecutive patients. Eur. Heart J. 32(8), 991–998 (2011).
    • 40. Sohail MR, Henrikson CA, Braid-Forbes MJ et al. Mortality and cost associated with cardiovascular implantable electronic device infections. Arch. Int. Med. 171(20), 1821–1828 (2011).
    • 41. Clémenty N, Carion PL, Léotoing L et al. Infections and associated costs following cardiovascular implantable electronic device implantations: a nationwide cohort study. Europace 20(12), 1974–1980 (2018).
    • 42. Tarakji KG, Wazni OM, Harb S et al. Risk factors for 1-year mortality among patients with cardiac implantable electronic device infection undergoing transvenous lead extraction: the impact of the infection type and the presence of vegetation on survival. Europace 16(10), 1490–1495 (2014).
    • 43. Boyle TA, Uslan DZ, Prutkin JM et al. Reimplantation and repeat infection after cardiac-implantable electronic device infections: experience from the MEDIC (multicenter electrophysiologic device infection cohort) database. Circ. Arrhythm Electrophysiol. 10(3), e004822 (2017).
    • 44. El-Chami MF, Soejima K, Piccini JP et al. Incidence and outcomes of systemic infections in patients with leadless pacemakers: Data from the Micra IDE study. Pacing Clin. Electrophysiol. 42(8), 1105–1110 (2019).
    • 45. El-Chami MF, Johansen JB, Zaidi A et al. Leadless pacemaker implant in patients with pre-existing infections: results from the Micra postapproval registry. J. Cardiovasc. Electrophysiol. 30(4), 569–574 (2019).
    • 46. El-Chami MF, Bonner M, Holbrook R et al. Leadless pacemakers reduce risk of device-related infection: review of the potential mechanisms. Heart Rhythm 17(8), 1393–1397 (2020).
    • 47. Wang IK, Lin KH, Lin SY et al. Permanent cardiac pacing in patients with end-stage renal disease undergoing dialysis. Nephrol. Dial. Transplant. 31(12), 2115–2122 (2016).
    • 48. Asif A, Salman L, Carrillo RG et al. Patency rates for angioplasty in the treatment of pacemaker induced central venous stenosis in hemodialysis patients: results of a multi-center study. Semin. Dial. 22, 671–676 (2009).
    • 49. Saad TF, Ahmed W, Davis K, Jurkovitz C. Cardiovascular implantable electronic devices in hemodialysis patients: prevalence and implications for arteriovenous hemodialysis access interventions. Semin. Dial. 28(1), 94–100 (2015).
    • 50. Asif A, Carrillo R, Garisto JD et al. Epicardial cardiac rhythm devices for dialysis patients: minimizing the risk of infection and preserving central veins. Semin. Dial. 25(1), 88–94 (2012).
    • 51. Carrillo RG, Garisto JD, Salman L et al. Contamination of transvenous pacemaker leads due to tunneled hemodialysis catheter infection: a report of 2 cases. Am. J. Kidney Dis. 55(6), 1097–1101 (2010).
    • 52. El-Chami MF, Clementy N, Garweg C et al. Leadless pacemaker implantation in hemodialysis patients: experience with the Micra transcatheter pacemaker. JACC Clin. Electrophysiol. 5(2), 162–170 (2019).
    • 53. Soteriades ES, Evans JC, Larson MG et al. Incidence and prognosis of syncope. N. Engl. J. Med. 347(12), 878–885 (2002).
    • 54. Trim GM, Krahn AD, Klein GJ et al. Pacing for vasovagal syncope after the second Vasovagal Pacemaker Study (VPS II): a matter of judgement. Card. Electrophysiol. Rev. 7(4), 416–420 (2003).
    • 55. Brignole M, Moya A, de Lange FJ et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Heart J. 39(21), 1883–1948 (2018).
    • 56. ElRefai M, Menexi C, Abouelasaad M et al. A leadless pacemaker matched with a vasovagal syncope: how long can it last? Pacing Clin. Electrophysiol. 45(7), 874–884 (2022).
    • 57. Turagam MK, Gopinathannair R, Park PH et al. Safety and efficacy of leadless pacemaker for cardioinhibitory vasovagal syncope. Heart Rhythm 17(9), 1575–1581 (2020).
    • 58. Roberts PR, Pepper C, Rinaldi CA et al. The use of a single chamber leadless pacemaker for the treatment of cardioinhibitory vasovagal syncope. Int. J. Cardiol. Heart Vasc. 23, 100349 (2019).
    • 59. McLeod KA, Wilson N, Hewitt J et al. Cardiac pacing for severe childhood neurally mediated syncope with reflex anoxic seizures. Heart 82(6), 721–725 (1999).
    • 60. Brignole M, Russo V, Arabia F et al. Cardiac pacing in severe recurrent reflex syncope and tilt-induced asystole. Eur Heart J. 42(5), 508–516 (2021).
    • 61. Russo V, Rago A, De Rosa M et al. Does cardiac pacing reduce syncopal recurrences in cardioinhibitory vasovagal syncope patients selected with head-up tilt test? Analysis of a 5-year follow-up database. Int. J. Cardiol. 270, 149–153 (2018).
    • 62. von Alvensleben JC, Collins KK. Leadless pacemakers in pediatric patients: is less actually more? J. Innov. Card. Rhythm Manag. 11(10), 4263–4264 (2020).
    • 63. McCanta AC, Morchi GS, Tuozo F et al. Implantation of a leadless pacemaker in a pediatric patient with congenital heart disease. Heart Rhythm Case Rep. 4(11), 506–509 (2018).
    • 64. Breatnach CR, Dunne L, Al-Alawi K et al. Leadless Micra pacemaker use in the pediatric population: device implantation and short-term outcomes. Pediatr. Cardiol. 41(4), 683–686 (2020).
    • 65. Gallotti RG, Biniwale R, Shannon K et al. Leadless pacemaker placement in an 18-kilogram child: procedural approach and technical considerations. Heart Rhythm Case Rep. 5(11), 555–558 (2019).
    • 66. Hackett G, Aziz F, Samii S, Imundo JR. Delivery of a leadless transcatheter pacing system as first-line therapy in a 28-kg pediatric patient through proximal right internal jugular surgical cutdown. J. Innov. Card. Rhythm Manag. 12(4), 4482–4486 (2021).
    • 67. Cortez D. Innovative implantation of a leadless pacemaker in a 19 kg paediatric patient via the right internal jugular vein. Europace 21(10), 1542 (2019).
    • 68. Surti AK, Ambrose M, Cortez D. First description of a successful leadless pacemaker implantation via the left internal jugular vein (in a 20 kg patient). J. Electrocardiol. 60, 1–2 (2020).
    • 69. Jędrzejczyk-Patej E, Woźniak A, Litwin L et al. Successful implantation of leadless pacemakers in children: a case series. Eur. Heart J. Case Rep. 4(3), 1–6 (2020).
    • 70. Shah MJ, Borquez AA, Cortez D et al. Transcatheter leadless pacing in children: a PACES collaborative study in the real-world setting. Circ. Arrhythm Electrophysiol. 16(4), e011447 (2023).
    • 71. Cleland JG, Freemantle N, Erdmann E et al. Long-term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization-Heart Failure (CARE-HF) trial. Eur. J. Heart Fail. 14(6), 628–634 (2012).
    • 72. Cleland JG, Abraham WT, Linde C et al. An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur. Heart J. 34(46), 3547–3556 (2013).
    • 73. Sohaib SM, Finegold JA, Nijjer SS et al. Opportunity to increase life span in narrow QRS cardiac resynchronization therapy recipients by deactivating ventricular pacing: evidence from randomized controlled trials. JACC Heart Fail. 3(4), 327–336 (2015).
    • 74. Chung ES, Leon AR, Tavazzi L et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 117(20), 2608–2616 (2008).
    • 75. McAlister FA, Ezekowitz J, Hooton N et al. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA 297(22), 2502–2514 (2007).
    • 76. León AR, Abraham WT, Curtis AB et al. Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: combined results of over 2,000 patients from a multicenter study program. J. Am. Coll. Cardiol. 46(12), 2348–2356 (2005).
    • 77. Auricchio A, Delnoy PP, Butter C et al. Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the wireless stimulation endocardially for CRT (WiSE-CRT) study. Europace 16(5), 681–688 (2014).
    • 78. Sidhu BS, Sieniewicz B, Gould J et al. Leadless left ventricular endocardial pacing for CRT upgrades in previously failed and high-risk patients in comparison with coronary sinus CRT upgrades. Europace 23(10), 1577–1585 (2021).
    • 79. Okabe T, Hummel JD, Bank AJ et al. Leadless left ventricular stimulation with WiSE-CRT system – initial experience and results from phase I of SOLVE-CRT Study (nonrandomized, roll-in phase). Heart Rhythm 19(1), 22–29 (2022).
    • 80. Glikson M, Nielsen JC, Kronborg MB et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 42(35), 3427–3520 (2021).
    • 81. Boersma LV, El-Chami M, Steinwender C et al. Practical considerations, indications, and future perspectives for leadless and extravascular cardiac implantable electronic devices: a position paper by European Heart Rhythm Association (EHRA/HRS/LAHRS/APHRS. Europace 24(10), 1691–1708 (2022). •• The first position paper by The European Heart Rhythm Association (EHRA)/ Heart Rhythm Society (HRS)/ Latin American Heart Rhythm Society (LAHRS)/ Asia Pacific Heart Rhythm Society (APHRS) regarding leadless and extravascular CIEDs.
    • 82. Roberts PR, ElRefai M, Foley P et al. UK expert consensus statement for the optimal use and clinical utility of leadless pacing systems on behalf of the British Heart Rhythm Society. Arrhythm Electrophysiol. Rev. 11, e19 (2022).
    • 83. Steinwender C, Lercher P, Schukro C et al. State of the art: leadless ventricular pacing: a national expert consensus of the Austrian Society of Cardiology. J. Interv. Card. Electrophysiol. 57(1), 27–37 (2020).
    • 84. Kempa M, Mitkowski P, Kowalski O, Sterliński M, Przybylski A, Kaźmierczak J. Expert opinion of a Working Group on Leadless Pacing appointed by the National Consultant in Cardiology and the Board of the Heart Rhythm Section of the Polish Cardiac Society. Kardiol. Pol. 79(5), 604–608 (2021).
    • 85. Omdahl P, Eggen MD, Bonner MD et al. Right ventricular anatomy can accommodate multiple Micra transcatheter pacemakers. Pacing Clin. Electrophysiol. 39(4), 393–397 (2016).
    • 86. Sánchez P, Apolo J, San Antonio R et al. Safety and usefulness of a second Micra transcatheter pacemaker implantation after battery depletion. Europace 21(6), 885 (2019).
    • 87. Cheung L, Chan GCP, Chan JYS, Lau CP. Cremation of leadless pacemaker. Pacing Clin. Electrophysiol. 40(6), 629–631 (2017).
    • 88. Koay A, Khelae S, Wei KK et al. Treating an infected transcatheter pacemaker system via percutaneous extraction. Heart Rhythm Case Rep. 2(4), 360–362 (2016).
    • 89. Kiani S, Merchant FM, El-Chami MF. Extraction of a 4-year-old leadless pacemaker with a tine-based fixation. Heart Rhythm Case Rep. 5(8), 424–425 (2019).
    • 90. Karim S, Abdelmessih M, Marieb M et al. Extraction of a Micra Transcatheter Pacing System: first-in-human experience. Heart Rhythm Case Rep. 2(1), 60–62 (2015).
    • 91. Bhatia NK, Kiani S, Merchant FM et al. Life cycle management of Micra Transcatheter Pacing System: data from a high-volume center. J. Cardiovasc. Electrophysiol. 32(2), 484–490 (2021).
    • 92. Afzal MR, Daoud EG, Cunnane R et al. Techniques for successful early retrieval of the Micra Transcatheter Pacing System: a worldwide experience. Heart Rhythm 15(6), 841–846 (2018).
    • 93. Dar T, Akella K, Murtaza G et al. Comparison of the safety and efficacy of Nanostim and Micra transcatheter leadless pacemaker (LP) extractions: a multicenter experience. J. Interv. Card. Electrophysiol. 57(1), 133–140 (2020).
    • 94. Haeberlin A, Zurbuchen A, Walpen S et al. The first batteryless, solar-powered cardiac pacemaker. Heart Rhythm 12(6), 1317–1323 (2015).
    • 95. Adrian Z, Andreas H, Lukas B et al. The Swiss approach for a heartbeat-driven lead- and batteryless pacemaker. Heart Rhythm 14(2), 294–299 (2017).
    • 96. Ryu H, Park HM, K MK et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12(1), 4374 (2021).
    • 97. Innovation District. First infants in the US with specially modified pacemakers show excellent early outcomes (2023). https://innovationdistrict.childrensnational.org/first-infants-in-the-u-s-with-specially-modified-pacemakers-show-excellent-early-outcomes/