We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
ReviewFree Access

The roles of Jumonji-type oxygenases in human disease

    Catrine Johansson

    Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK

    ,
    Anthony Tumber

    Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK

    ,
    KaHing Che

    Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK

    Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK

    ,
    Peter Cain

    Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK

    ,
    Radosław Nowak

    Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK

    Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK

    Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK

    ,
    Carina Gileadi

    Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK

    &
    Udo Oppermann

    Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK

    Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK

    Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK

    Published Online:https://doi.org/10.2217/epi.13.79

    The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases.

    Papers of special note have been highlighted as:

    • of interest

    References

    • 1 Loenarz C, Schofield CJ. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 36(1), 7–18 (2010).
    • 2 Takeuchi T, Yamazaki Y, Katoh-Fukui Y et al. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9(10), 1211–1222 (1995).▪▪ These papers [2,4,5], collectively establish a eukaryotic family of transcriptional regulators associated with 2-OG and Fe2+-dependent oxygenase activity.
    • 3 Takeuchi T, Watanabe Y, Takano-Shimizu T, Kondo S. Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev. Dyn. 235(9), 2449–2459 (2006).
    • 4 Balciunas D, Ronne H. Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem. Sci. 25(6), 274–276 (2000).▪▪ These papers [2,4,5], collectively establish a eukaryotic family of transcriptional regulators associated with 2-OG and Fe2+-dependent oxygenase activity.
    • 5 Clissold PM, Ponting CP. Jmj C: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2beta. Trends Biochem Sci. 26(1), 7–9 (2001). ▪▪ These papers [2,4,5] collectively establish a eukaryotic family of transcriptional regulators associated with 2-OG and Fe2+-dependent oxygenase activity.
    • 6 Ng SS, Kavanagh KL, Mcdonough MA et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448(7149), 87–91 (2007).
    • 7 Shi Y, Lan F, Matson C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7), 941–953 (2004).▪▪ These papers establish two distinct classes of histone demethylases and demonstrate that methylated lysine residues in histones constitute a reversible modification.
    • 8 Mcdonough MA, Kavanagh KL, Butler D, Searls T, Oppermann U, Schofield CJ. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of Refsum disease. J. Biol. Chem. 280(49), 41101–41110 (2005).
    • 9 Leung IK, Krojer TJ, Kochan GT et al. Structural and mechanistic studies on gamma-butyrobetaine hydroxylase. Chem. Biol 17(12), 1316–1324 (2010).
    • 10 Hautala T, Byers MG, Eddy RL, Shows TB, Kivirikko KI, Myllyla R. Cloning of human lysyl hydroxylase: complete cDNA-derived amino acid sequence and assignment of the gene (PLOD) to chromosome 1p36.3—-p36.2. Genomics 13(1), 62–69 (1992).
    • 11 Clifton IJ, Mcdonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield CJ. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J. Inorganic Biochem. 100(4), 644–669 (2006).
    • 12 Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7(9), 715–727 (2006).
    • 13 Mcdonough MA, Loenarz C, Chowdhury R, Clifton IJ, Schofield CJ. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr. Opin Struct. Biol. 20(6), 659–672 (2010).
    • 14 Han Z, Niu T, Chang J et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464(7292), 1205–1209 (2010).
    • 15 Tsukada Y, Fang J, Erdjument-Bromage H et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078), 811–816 (2006).▪▪ These papers establish two distinct classes of histone demethylases and demonstrate that methylated lysine residues in histones constitute a reversible modification.
    • 16 Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450(7167), 309–313 (2007).
    • 17 Lu T, Jackson Mw, Wang B et al. Regulation of NF-kappaB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl Acad. Sci. USA 107(1), 46–51 (2010).
    • 18 Yamane K, Toumazou C, Tsukada Y et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125(3), 483–495 (2006).
    • 19 Brauchle M, Yao Z, Arora R et al. Protein Complex Interactor Analysis and Differential Activity of KDM3 Subfamily Members Towards H3K9 Methylation. PLoS ONE 8(4), e60549 (2013).
    • 20 Hillringhaus L, Yue WW, Rose NR et al. Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J. Biol. Chem. 286(48), 41616–41625 (2011).
    • 21 Ponnaluri VK, Vavilala DT, Putty S, Gutheil WG, Mukherji M. Identification of non-histone substrates for JMJD2A-C histone demethylases. Biochem. Biophys. Res. Commun. 390(2), 280–284 (2009).
    • 22 Trojer P, Zhang J, Yonezawa M et al. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J Biol Chem 284(13), 8395–8405 (2009).
    • 23 Christensen J, Agger K, Cloos Pa et al. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128(6), 1063–1076 (2007).
    • 24 Iwase S, Lan F, Bayliss P et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128(6), 1077–1088 (2007).
    • 25 Klose RJ, Yan Q, Tothova Z et al. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128(5), 889–900 (2007).
    • 26 Lee MG, Norman J, Shilatifard A, Shiekhattar R. Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128(5), 877–887 (2007).
    • 27 Seward DJ, Cubberley G, Kim S et al. Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nat. Struct. Mol. Biol. 14(3), 240–242 (2007).
    • 28 De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130(6), 1083–1094 (2007).
    • 29 Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA 104(47), 18439–18444 (2007).
    • 30 Lan F, Bayliss PE, Rinn JL et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163), 689–694 (2007).
    • 31 Lee MG, Villa R, Trojer P et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849), 447–450 (2007).
    • 32 Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD. JMJD3 is a histone H3K27 demethylase. Cell Res. 17(10), 850–857 (2007).
    • 33 Wen H, Li J, Song T et al. Recognition of histone H3K4 trimethylation by the plant homeodomain of PHF2 modulates histone demethylation. J. Biol. Chem. 285(13), 9322–9326 (2010).
    • 34 Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat. Struct. Mol. Biol. 17(1), 38–43 (2010).
    • 35 Zhu Z, Wang Y, Li X et al. PHF8 is a histone H3K9me2 demethylase regulating rRNA synthesis. Cell Res. 20(7), 794–801 (2010).
    • 36 Qi HH, Sarkissian M, Hu GG et al. Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466(7305), 503–507 (2010).
    • 37 Tsukada Y, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 24(5), 432–437 (2010).
    • 38 Yue Ww, Hozjan V, Ge W et al. Crystal structure of the PHF8 Jumonji domain, an Nepsilon-methyl lysine demethylase. FEBS Lett. 584(4), 825–830 (2010).
    • 39 Ge W, Wolf A, Feng T et al. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat. Chem. Biol. 8(12), 960–962 (2012).▪ Demonstrates that Jmj containing enzymes hydroxylate nonchromatin substrates
    • 40 Sinha KM, Yasuda H, Coombes MM, Dent SY, De Crombrugghe B. Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO J. 29(1), 68–79 (2010).
    • 41 Lu Y, Beezhold K, Chang Q et al. Lung cancer-associated JmjC domain protein mdig suppresses formation of tri-methyl lysine 9 of histone H3. Cell Cycle 8(13), 2101–2109 (2009).
    • 42 Hsia DA, Tepper CG, Pochampalli MR et al. KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc. Natl Acad. Sci. USA 107(21), 9671–9676 (2010).
    • 43 Youn M-Y, Yokoyama A, Fujiyama-Nakamura S et al. JMJD5, a Jumonji C (JmjC) domain-containing protein, negatively regulates osteoclastogenesis by facilitating NFATc1 protein degradation. J. Biol. Chem. 287(16), 12994–13004 (2012).
    • 44 Chang B, Chen Y, Zhao Y, Bruick RK. JMJD6 is a histone arginine demethylase. Science 318(5849), 444–447 (2007).
    • 45 Webby Cj, Wolf A, Gromak N et al. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325(5936), 90–93 (2009).
    • 46 Mantri M, Loik ND, Hamed RB, Claridge TDW, Mccullagh JSO, Schofield CJ. The 2-oxoglutarate-dependent oxygenase JMJD6 catalyses oxidation of lysine residues to give 5S-hydroxylysine residues. ChemBioChem 12(4), 531–534 (2011).
    • 47 Unoki M, Masuda A, Dohmae N et al. Lysyl 5-hydroxylation, a novel hstone modification, by Jumonji domain containing 6 (JMJD6). J. Biol. Chem. 288(9), 6053–6062 (2013).
    • 48 Yang M, Chowdhury R, Ge W et al. Factor-inhibiting hypoxia-inducible factor (FIH) catalyses the post-translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS J. 278(7), 1086–1097 (2011).
    • 49 Yang M, Ge W, Chowdhury R et al. Asparagine and aspartate hydroxylation of the cytoskeletal ankyrin family is catalyzed by factor-inhibiting hypoxia-inducible factor. J. Biol. Chem. 286(9), 7648–7660 (2011).
    • 50 Cockman ME, Lancaster DE, Stolze IP et al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA 103(40), 14767–14772 (2006).
    • 51 Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16(12), 1466–1471 (2002).
    • 52 Noma A, Ishitani R, Kato M, Nagao A, Nureki O, Suzuki T. Expanding role of the jumonji C domain as an RNA hydroxylase. J. Biol. Chem. 285(45), 34503–34507 (2010).
    • 53 Sedgwick B. Repairing DNA-methylation damage. Nat. Rev. Mol. Cell Biol. 5(2), 148–157 (2004).
    • 54 Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl Acad. Sci. USA 99(26), 16660–16665 (2002).▪ Establishes the function of human ALKBH enzymes in DNA repair.
    • 55 Li Mm, Nilsen A, Shi Y et al. ALKBH4-dependent demethylation of actin regulates actomyosin dynamics. Nat. Commun. 4, 1832 (2013).
    • 56 Zheng G, Dahl JA, Niu Y et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49(1), 18–29 (2012).
    • 57 Fu D, Brophy JA, Chan CT et al. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol. Cell Biol. 30(10), 2449–2459 (2010).
    • 58 Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929), 930–935 (2009).▪▪ These papers collectively identify the 5-methylcytosine hydroxylases TET1-3 of critical importance in reversal of DNA methylation.
    • 59 Ito S, Shen L, Dai Q et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047), 1300–1303 (2011).▪▪ These papers collectively identify the 5-methylcytosine hydroxylases TET1-3 of critical importance in reversal of DNA methylation.
    • 60 Gerken T, Girard CA, Tung YC et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855), 1469–1472 (2007).▪▪ This series of papers establishes the 2-OG oxygenase FTO as risk factor of metabolic diseases and links them to N6-methyladenosine demethylation.
    • 61 Jia G, Yang Cg, Yang S et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582(23–24), 3313–3319 (2008).
    • 62 Landeira D, Sauer S, Poot R et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. Nat. Cell. Biol. 12(6), 618–624 (2010).▪ These (and other) papers demonstrate an important, nonenzymatic function of Jmj-containing proteins, by providing structural scaffolds in transcriptional complexes.
    • 63 Pasini D, Cloos PA, Walfridsson J et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464(7286), 306–310 (2010).▪ These (and other) papers demonstrate an important, nonenzymatic function of Jmj-containing proteins, by providing structural scaffolds in transcriptional complexes.
    • 64 Peng JC, Valouev A, Swigut T et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139(7), 1290–1302 (2009).▪ These (and other) papers demonstrate an important, nonenzymatic function of Jmj-containing proteins, by providing structural scaffolds in transcriptional complexes.
    • 65 Shen X, Kim W, Fujiwara Y et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139(7), 1303–1314 (2009).▪ These (and other) papers demonstrate an important, nonenzymatic function of Jmj-containing proteins, by providing structural scaffolds in transcriptional complexes
    • 66 Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 276(5688), 565–570 (1978).
    • 67 Struhl G. A gene product required for correct initiation of segmental determination in Drosophila. Nature 293(5827), 36–41 (1981).
    • 68 Bracken AP, Helin K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer 9(11), 773–784 (2009).
    • 69 Metzger E, Wissmann M, Yin N et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057), 436–439 (2005).
    • 70 Allis CD, Berger SL, Cote J et al. New nomenclature for chromatin-modifying enzymes. Cell 131(4), 633–636 (2007).
    • 71 Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M. An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414), 57–74 (2012).
    • 72 Ng SS, Yue WW, Oppermann U, Klose RJ. Dynamic protein methylation in chromatin biology. Cell. Mol. Life Sci. 66(3), 407–422 (2009).
    • 73 Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13(5), 297–311 (2012).
    • 74 Pedersen MT, Helin K. Histone demethylases in development and disease. Trends Cell Biol. 20(11), 662–671 (2010).
    • 75 Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 150(1), 12–27 (2012).
    • 76 Greer El, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13(5), 343–357 (2012).
    • 77 Mosammaparast N, Shi Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu. Rev. Biochem. 79, 155–179 (2010).
    • 78 Ciccone DN, Su H, Hevi S et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262), 415–418 (2009).
    • 79 Karytinos A, Forneris F, Profumo A et al. A novel mammalian flavin-dependent histone demethylase. J. Biol. Chem. 284(26), 17775–17782 (2009).
    • 80 Wang J, Hevi S, Kurash JK et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41(1), 125–129 (2009).
    • 81 Kerenyi Ma, Shao Z, Hsu YJ et al. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. Elife 2, e00633 (2013).
    • 82 Sprussel A, Schulte JH, Weber S et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 26(9), 2039–2051 (2012).
    • 83 Schenk T, Chen Wc, Gollner S et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 18(4), 605–611 (2012).
    • 84 Wang J, Lu F, Ren Q et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 71(23), 7238–7249 (2011).
    • 85 Tsai Mc, Manor O, Wan Y et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992), 689–693 (2010).
    • 86 Wang Y, Zhang H, Chen Y et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4), 660–672 (2009).
    • 87 Garcia-Bassets I, Kwon Ys, Telese F et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128(3), 505–518 (2007).
    • 88 Huang J, Sengupta R, Espejo AB et al. p53 is regulated by the lysine demethylase LSD1. Nature 449(7158), 105–108 (2007).
    • 89 Deaton Am, Bird A. CpG islands and the regulation of transcription. Genes Dev 25(10), 1010–1022 (2011).
    • 90 Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ. CpG islands recruit a histone H3 lysine 36 demethylase. Molecular cell 38(2), 179–190 (2010).
    • 91 Farcas Am, Blackledge Np, Sudbery I et al. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife 1, e00205 (2012).
    • 92 He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15(4), 373–384 (2013).
    • 93 Wu X, Johansen JV, Helin K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49(6), 1134–1146 (2013).
    • 94 Lagarou A, Mohd-Sarip A, Moshkin YM et al. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. Genes Dev. 22(20), 2799–2810 (2008).
    • 95 Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3), 470–484 (2010).
    • 96 Tanaka Y, Okamoto K, Teye K et al. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J. 29(9), 1510–1522 (2010).
    • 97 Barrero MJ, Izpisua Belmonte JC. Polycomb complex recruitment in pluripotent stem cells. Nat. Cell Biol. 15(4), 348–350 (2013).
    • 98 Du J, Ma Y, Ma P, Wang S, Fan Z. Demethylation of epiregulin gene by histone demethylase FBXL11 and BCL6 corepressor inhibits osteo/dentinogenic differentiation. Stem Cells 31(1), 126–136 (2013).
    • 99 Gao R, Dong R, Du J, Ma P, Wang S, Fan Z. Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from apical papilla by de-repression of p15(INK4B) and p27 (Kip1.). Mol. Cellular Biochemistry 379(1–2), 115–122 (2013).
    • 100 Iuchi S, Green H. Lysine-specific demethylase 2A (KDM2A) normalizes human embryonic stem cell derived keratinocytes. Proc. Natl Acad. Sci. USA 109(24), 9442–9447 (2012).
    • 101 Liang G, He J, Zhang Y. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat. Cell. Biol. 14(5), 457–466 (2012).
    • 102 Wang T, Chen K, Zeng X et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 9(6), 575–587 (2011).
    • 103 Gearhart MD, Corcoran CM, Wamstad JA, Bardwell VJ. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell Biol. 26(18), 6880–6889 (2006).
    • 104 He J, Kallin EM, Tsukada Y, Zhang Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat. Struct. Mol. Biol. 15(11), 1169–1175 (2008).
    • 105 Tzatsos A, Pfau R, Kampranis SC, Tsichlis PN. Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proc. Natl Acad. Sci. USA 106(8), 2641–2646 (2009).
    • 106 He J, Nguyen At, Zhang Y. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117(14), 3869–3880 (2011).
    • 107 Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol. Cell 43(2), 285–298 (2011).
    • 108 Tzatsos A, Paskaleva P, Ferrari F et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J. Clin. Invest. 123(2), 727–739 (2013).
    • 109 Chen H, Giri NC, Zhang R et al. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J. Biol. Chem. 285(10), 7374–7383 (2010).
    • 110 Hickok JR, Vasudevan D, Antholine WE, Thomas DD. Nitric oxide modifies global histone methylation by Inhibiting Jumonji C domain-containing demethylases. J. Biol. Chem. 288(22), 16004–16015 (2013).
    • 111 Yang F, Stenoien DL, Strittmatter EF et al. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J. Proteome Res. 5(5), 1252–1260 (2006).
    • 112 Liu Z, Zhou S, Liao L, Chen X, Meistrich M, Xu J. Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J. Biol. Chem. 285(4), 2758–2770 (2010).
    • 113 Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450(7166), 119–123 (2007).
    • 114 Inagaki T, Tachibana M, Magoori K et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells 14(8), 991–1001 (2009).
    • 115 Tateishi K, Okada Y, Kallin Em, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458(7239), 757–761 (2009).
    • 116 Wellmann S, Bettkober M, Zelmer A et al. Hypoxia upregulates the histone demethylase JMJD1A via HIF-1. Biochem. Biophys. Res. Commun. 372(4), 892–897 (2008).
    • 117 Osawa T, Tsuchida R, Muramatsu M et al. Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages. Cancer Res. 73(10), 3019–3028 (2013).
    • 118 Yamada D, Kobayashi S, Yamamoto H et al. Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: clinical impact on recurrence after hepatic resection. Ann. Surg. Oncol. 19( Suppl. 3), S355–364 (2012).
    • 119 Qi J, Nakayama K, Cardiff Rd et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18(1), 23–38 (2010).
    • 120 Uemura M, Yamamoto H, Takemasa I et al. Jumonji domain containing 1A is a novel prognostic marker for colorectal cancer: in vivo identification from hypoxic tumor cells. Clin. Cancer Res. 16(18), 4636–4646 (2010).
    • 121 Guo X, Shi M, Sun L et al. The expression of histone demethylase JMJD1A in renal cell carcinoma. Neoplasma 58(2), 153–157 (2011).
    • 122 Mackinnon RN, Kannourakis G, Wall M, Campbell LJ. A cryptic deletion in 5q31.2 provides further evidence for a minimally deleted region in myelodysplastic syndromes. Cancer Genet. 204(4), 187–194 (2011).
    • 123 Tang MH, Varadan V, Kamalakaran S, Zhang MG, Dimitrova N, Hicks J. Major chromosomal breakpoint intervals in breast cancer co-localize with differentially methylated regions. Front. Oncol. 2, 197 (2012).
    • 124 Hu Z, Gomes I, Horrigan SK et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene 20(47), 6946–6954 (2001).
    • 125 Kim JY, Kim KB, Eom GH et al. KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol. Cell Biol. 32(14), 2917–2933 (2012).
    • 126 Lee JW, Choi HS, Gyuris J, Brent R, Moore DD. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9(2), 243–254 (1995).
    • 127 Katoh M. Identification and characterization of TRIP8 gene in silico. Int. J. Mol. Med. 12(5), 817–821 (2003).
    • 128 Katoh M. Comparative integromics on JMJD1C gene encoding histone demethylase: conserved POU5F1 binding site elucidating mechanism of JMJD1C expression in undifferentiated ES cells and diffuse-type gastric cancer. Int. J. Oncol. 31(1), 219–223 (2007).
    • 129 Wolf SS, Patchev VK, Obendorf M. A novel variant of the putative demethylase gene, s-JMJD1C, is a coactivator of the AR. Arch. Biochem. Biophys. 460(1), 56–66 (2007).
    • 130 Kim SM, Kim JY, Choe NW et al. Regulation of mouse steroidogenesis by WHISTLE and JMJD1C through histone methylation balance. Nucleic Acids Res. 38(19), 6389–6403 (2010).
    • 131 Cachon-Gonzalez MB, Fenner S, Coffin JM, Moran C, Best S, Stoye JP. Structure and expression of the hairless gene of mice. Proc. Natl Acad. Sci. USA 91(16), 7717–7721 (1994).
    • 132 Thompson CC. Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J. Neurosci. 16(24), 7832–7840 (1996).
    • 133 Hsieh JC, Sisk JM, Jurutka PW et al. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J. Biol. Chem. 278(40), 38665–38674 (2003).
    • 134 Moraitis AN, Giguere V, Thompson CC. Novel mechanism of nuclear receptor corepressor interaction dictated by activation function 2 helix determinants. Mol. Cell Biol. 22(19), 6831–6841 (2002).
    • 135 Potter GB, Beaudoin GM 3rd, Derenzo CL, Zarach JM, Chen SH, Thompson CC. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. Genes Dev. 15(20), 2687–2701 (2001).
    • 136 Mi Y, Zhang Y, Shen Yf. Mechanism of JmjC-containing protein Hairless in the regulation of vitamin D receptor function. Biochim. Biophys. Acta 1812(12), 1675–1680 (2011).
    • 137 Potter GB, Zarach JM, Sisk JM, Thompson CC. The thyroid hormone-regulated corepressor hairless associates with histone deacetylases in neonatal rat brain. Mol. Endocrinol. 16(11), 2547–2560 (2002).
    • 138 Ahmad W, Faiyaz UL, Haque M, Brancolini V et al. Alopecia universalis associated with a mutation in the human hairless gene. Science 279(5351), 720–724 (1998).
    • 139 Katoh Y, Katoh M. Comparative integromics on JMJD2A, JMJD2B and JMJD2C: preferential expression of JMJD2C in undifferentiated ES cells. Int. J. Mol. Med. 20(2), 269–273 (2007).
    • 140 Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 73(10), 2936–2942 (2013).
    • 141 Crea F, Sun L, Mai A et al. The emerging role of histone lysine demethylases in prostate cancer. Mol. Cancer 11, 52 (2012).
    • 142 Cloos PA, Christensen J, Agger K et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442(7100), 307–311 (2006).
    • 143 Shin S, Janknecht R. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem. Biophys. Res. Commun. 359(3), 742–746 (2007).
    • 144 Wissmann M, Yin N, Muller Jm et al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell. Biol. 9(3), 347–353 (2007).
    • 145 Suikki He, Kujala Pm, Tammela Tl, Van Weerden Wm, Vessella Rl, Visakorpi T. Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate 70(8), 889–898 (2010).
    • 146 Coffey K, Rogerson L, Ryan-Munden C et al. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res. 41(8), 4433–4446 (2013).
    • 147 Gaughan L, Stockley J, Coffey K et al. KDM4B is a master regulator of the estrogen receptor signalling cascade. Nucleic Acids Res. 41(14), 6892–6904 (2013).
    • 148 Liu G, Bollig-Fischer A, Kreike B et al. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28(50), 4491–4500 (2009).
    • 149 Li BX, Zhang MC, Luo CL et al. Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. J. Exp. Clin. Cancer Res. 30, 90 (2011).
    • 150 Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int. J. Oncol. 41(5), 1701–1706 (2012).
    • 151 Yang J, Jubb AM, Pike L et al. The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res. 70(16), 6456–6466 (2010).
    • 152 Kawazu M, Saso K, Tong Ki et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS ONE 6(3), e17830 (2011).
    • 153 Shi L, Sun L, Li Q et al. Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc. Natl Acad. Sci. USA 108(18), 7541–7546 (2011).
    • 154 Pollard PJ, Loenarz C, Mole DR et al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem. J. 416(3), 387–394 (2008).
    • 155 Zhu Y, Van Essen D, Saccani S. Cell-type-specific control of enhancer activity by H3K9 trimethylation. Mol. Cell. 46(4), 408–423 (2012).
    • 156 Strobl-Mazzulla PH, Sauka-Spengler T, Bronner-Fraser M. Histone demethylase JmjD2A regulates neural crest specification. Dev. Cell 19(3), 460–468
    • 157 Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J. Clin. Invest. 121(6), 2447–2456 (2011).
    • 158 Ye L, Fan Z, Yu B et al. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 11(1), 50–61 (2012).
    • 159 Guo L, Li X, Huang JX et al. Histone demethylase Kdm4b functions as a co-factor of C/EBPbeta to promote mitotic clonal expansion during differentiation of 3T3-L1 preadipocytes. Cell Death Differ. 19(12), 1917–1927 (2012).
    • 160 Chen Wd, Fu X, Dong B et al. Neonatal activation of the nuclear receptor CAR results in epigenetic memory and permanent change of drug metabolism in mouse liver. Hepatology 56(4), 1499–1509 (2012).
    • 161 Kim TD, Oh S, Shin S, Janknecht R. Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS ONE 7(4), e34618 (2012).
    • 162 Wilsker D, Probst L, Wain HM, Maltais L, Tucker PW, Moran E. Nomenclature of the ARID family of DNA-binding proteins. Genomics 86(2), 242–251 (2005).
    • 163 Wysocka J, Swigut T, Xiao H et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442(7098), 86–90 (2006).
    • 164 Tahiliani M, Mei P, Fang R et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447(7144), 601–605 (2007).
    • 165 Defeo-Jones D, Huang PS, Jones RE et al. Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352(6332), 251–254 (1991).
    • 166 Benevolenskaya EV, Murray HL, Branton P, Young RA, Kaelin WG Jr. Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Mol. Cell 18(6), 623–635 (2005).
    • 167 Chicas A, Kapoor A, Wang X et al. H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence. Proc. Natl Acad. Sci. USA 109(23), 8971–8976 (2012).
    • 168 Ditacchio L, Le HD, Vollmers C et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333(6051), 1881–1885 (2011).
    • 169 De Rooij JD, Hollink IH, Arentsen-Peters ST et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia27(12), 2280–2288 (2013).
    • 170 Pointon JJ, Harvey D, Karaderi T, Appleton LH, Farrar C, Wordsworth BP. The histone demethylase JARID1A is associated with susceptibility to ankylosing spondylitis. Genes Immun. 12(5), 395–398 (2011).
    • 171 Sharma SV, Lee DY, Li B et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1), 69–80 (2010).
    • 172 Cellot S, Hope KJ, Chagraoui J et al. RNAi screen identifies Jarid1b as a major regulator of mouse HSC activity. Blood 122(9), 1545–1555 (2013).
    • 173 Dey BK, Stalker L, Schnerch A, Bhatia M, Taylor-Papidimitriou J, Wynder C. The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation. Mol. Cell Biol 28(17), 5312–5327 (2008).
    • 174 Schmitz Su, Albert M, Malatesta M et al. Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J. 30(22), 4586–4600 (2011).
    • 175 Li Q, Shi L, Gui B et al. Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Res. 71(21), 6899–6908 (2011).
    • 176 Kuzbicki L, Lange D, Straczynska-Niemiec A, Chwirot BW. JARID1B expression in human melanoma and benign melanocytic skin lesions. Melanoma Res. 23(1), 8–12 (2013).
    • 177 Lu Pj, Sundquist K, Baeckstrom D et al. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem. 274(22), 15633–15645 (1999).
    • 178 Roesch A, Fukunaga-Kalabis M, Schmidt EC et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4), 583–594 (2010).
    • 179 Wouters J, Stas M, Gremeaux L et al. The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS ONE 8(10), e76550 (2013).
    • 180 Jensen LR, Amende M, Gurok U et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76(2), 227–236 (2005).
    • 181 Agulnik Ai, Mitchell Mj, Mattei Mg et al. A novel X gene with a widely transcribed Y-linked homologue escapes X-inactivation in mouse and human. Hum. Mol. Genet. 3(6), 879–884 (1994).
    • 182 Adegbola A, Gao H, Sommer S, Browning M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am. J. Med. Genet. Part A 146A(4), 505–511 (2008).
    • 183 Niu X, Zhang T, Liao L et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31(6), 776–786 (2012).
    • 184 Agulnik Ai, Mitchell Mj, Lerner Jl, Woods Dr, Bishop Ce. A mouse Y chromosome gene encoded by a region essential for spermatogenesis and expression of male-specific minor histocompatibility antigens. Hum. Mol. Genet. 3(6), 873–878 (1994).
    • 185 Scott DM, Ehrmann IE, Ellis PS et al. Identification of a mouse male-specific transplantation antigen, H-Y. Nature 376(6542), 695–698 (1995).
    • 186 Wang W, Meadows LR, Den Haan JM et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 269(5230), 1588–1590 (1995).
    • 187 Akimoto C, Kitagawa H, Matsumoto T, Kato S. Spermatogenesis-specific association of SMCY and MSH5. Genes Cells 13(6), 623–633 (2008).
    • 188 Perinchery G, Sasaki M, Angan A, Kumar V, Carroll P, Dahiya R. Deletion of Y-chromosome specific genes in human prostate cancer. J. Urol. 163(4), 1339–1342 (2000).
    • 189 Kruidenier L, Chung CW, Cheng Z et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488(7411), 404–408 (2012).
    • 190 Sola S, Xavier JM, Santos DM et al. p53 interaction with JMJD3 results in its nuclear distribution during mouse neural stem cell differentiation. PLoS ONE 6(3), e18421 (2011).
    • 191 Miller SA, Mohn SE, Weinmann AS. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40(4), 594–605 (2010).
    • 192 Miller SA, Weinmann AS. Molecular mechanisms by which T-bet regulates T-helper cell commitment. Immunol. Rev. 238(1), 233–246 (2010).
    • 193 Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2), 315–326 (2006).
    • 194 Awe JP, Byrne JA. Identifying candidate oocyte reprogramming factors using cross-species global transcriptional analysis. Cell Reprogram. 15(2), 126–133 (2013).
    • 195 Canovas S, Cibelli JB, Ross PJ. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc. Natl Acad. Sci. USA 109(7), 2400–2405 (2012).
    • 196 Jiang W, Wang J, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Res. 23(1), 122–130 (2013).
    • 197 Kim SW, Yoon SJ, Chuong E et al. Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs. Dev. Biol. 357(2), 492–504 (2011).
    • 198 Agger K, Cloos PA, Christensen J et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163), 731–734 (2007).
    • 199 Shahhoseini M, Taghizadeh Z, Hatami M, Baharvand H. Retinoic acid dependent histone 3 demethylation of the clustered HOX genes during neural differentiation of human embryonic stem cells. Biochem. Cell Biol. 91(2), 116–122 (2013).
    • 200 Zhao W, Li Q, Ayers S et al. Jmjd3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell 152(5), 1037–1050 (2013).
    • 201 Yasui T, Hirose J, Tsutsumi S, Nakamura K, Aburatani H, Tanaka S. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J. Bone Miner. Res. 26(11), 2665–2671 (2011).
    • 202 Burgold T, Voituron N, Caganova M et al. The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep. 2(5), 1244–1258 (2012).
    • 203 Jepsen K, Solum D, Zhou T et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450(7168), 415–419 (2007).
    • 204 Estaras C, Akizu N, Garcia A, Beltran S, De La Cruz X, Martinez-Balbas MA. Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development 139(15), 2681–2691 (2012).
    • 205 Fei T, Xia K, Li Z et al. Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Res. 20(1), 36–44 (2010).
    • 206 Dai JP, Lu JY, Zhang Y, Shen YF. Jmjd3 activates Mash1 gene in RA-induced neuronal differentiation of P19 cells. J. Cell Biochem. 110(6), 1457–1463 (2010).
    • 207 Giovarelli M, Bucci G, Pasero M, Gherzi R, Briata P. KSRP silencing favors neural differentiation of P19 teratocarcinoma cells. Biochim. Biophys. Acta 1829(5), 469–479 (2013).
    • 208 Lederer D, Grisart B, Digilio MC et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am. J. Human Genet. 90(1), 119–124 (2011).
    • 209 Priolo M, Micale L, Augello B et al. Absence of deletion and duplication of MLL2 and KDM6A genes in a large cohort of patients with Kabuki syndrome. Mol. Genet. Metab. 107(3), 627–629 (2012).
    • 210 Das ND, Jung KH, Choi MR, Yoon HS, Kim SH, Chai YG. Gene networking and inflammatory pathway analysis in a JMJD3 knockdown human monocytic cell line. Cell Biochem. Funct. 30(3), 224–232 (2012).
    • 211 Wei Y, Chen R, Dimicoli S et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia 27(11), 2177–2186 (2013).
    • 212 De Santa F, Narang V, Yap ZH et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J. 28(21), 3341–3352 (2009).
    • 213 Ishii M, Wen H, Corsa CA et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114(15), 3244–3254 (2009).
    • 214 Satoh T, Takeuchi O, Vandenbon A et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11(10), 936–944 (2010).
    • 215 Zhang Q, Long H, Liao J et al. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J. Autoimmun. 37(3), 180–189 (2011).
    • 216 Sen Gl, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 22(14), 1865–1870 (2008).
    • 217 Shaw T, Martin P. Epigenetic reprogramming during wound healing. loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep. 10(8), 881–886 (2009).
    • 218 Ciavatta DJ, Yang J, Preston GA et al. Epigenetic basis for aberrant upregulation of autoantigen genes in humans with ANCA vasculitis. J. Clin. Invest. 120(9), 3209–3219 (2010).
    • 219 Dumon S, Walton DS, Volpe G et al. Itga2b regulation at the onset of definitive hematopoiesis and commitment to differentiation. PLoS ONE 7(8), e43300 (2012).
    • 220 Anderton JA, Bose S, Vockerodt M et al. The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin's Lymphoma. Oncogene 30(17), 2037–2043 (2011).
    • 221 Mclaughlin-Drubin ME, Crum CP, Munger K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc. Natl Acad. Sci. USA 108(5), 2130–2135 (2011).
    • 222 Shen Y, Guo X, Wang Y et al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma. BMC Cancer 12, 470 (2012).
    • 223 Svotelis A, Bianco S, Madore J et al. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERalpha ligand dependency. EMBO J. 30(19), 3947–3961 (2011).
    • 224 Bunt J, Hasselt NA, Zwijnenburg DA, Koster J, Versteeg R, Kool M. OTX2 sustains a bivalent-like state of OTX2-bound promoters in medulloblastoma by maintaining their H3K27me3 levels. Acta Neuropathol. 125(3), 385–394 (2012).
    • 225 Dubuc Am, Remke M, Korshunov A et al. Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 125(3), 373–384 (2012).
    • 226 Agger K, Cloos PA, Rudkjaer L et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23(10), 1171–1176 (2009).
    • 227 Agherbi H, Gaussmann-Wenger A, Verthuy C, Chasson L, Serrano M, Djabali M. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence. PLoS ONE 4(5), e5622 (2009).
    • 228 Barradas M, Anderton E, Acosta JC et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 23(10), 1177–1182 (2009).
    • 229 Ramadoss S, Chen X, Wang Cy. Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J. Biol. Chem. 287(53), 44508–44517 (2012).
    • 230 Pereira F, Barbachano A, Silva J et al. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum. Mol. Genet. 20(23), 4655–4665 (2011).
    • 231 Pereira F, Barbachano A, Singh PK, Campbell MJ, Munoz A, Larriba MJ. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle 11(6), 1081–1089 (2012).
    • 232 Chen C, Bartenhagen C, Gombert M et al. Next-generation-sequencing-based risk stratification and identification of new genes involved in structural and sequence variations in near haploid lymphoblastic leukemia. Genes Chromosomes Cancer 52(6), 564–579 (2013).
    • 233 Van Haaften G, Dalgliesh GL, Davies H et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41(5), 521–523 (2009).
    • 234 Laaser I, Theis FJ, De Angelis MH, Kolb HJ, Adamski J. Huge splicing frequency in human Y chromosomal UTY gene. OMICS 15(3), 141–154 (2011).
    • 235 Warren EH, Gavin MA, Simpson E et al. The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen. J. Immunol. 164(5), 2807–2814 (2000).
    • 236 Bloomer LD, Nelson CP, Eales J et al. Male-specific region of the Y chromosome and cardiovascular risk: phylogenetic analysis and gene expression studies. Arterioscler. Thromb. Vasc. Biol. 33(7), 1722–1727 (2013).
    • 237 Fortschegger K, Shiekhattar R. Plant homeodomain fingers form a helping hand for transcription. Epigenetics 6(1), 4–8 (2010).
    • 238 Dai J, Sultan S, Taylor SS, Higgins JM. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19(4), 472–488 (2005).
    • 239 Fortschegger K, De Graaf P, Outchkourov Ns, Van Schaik FM, Timmers HT, Shiekhattar R. PHF8 targets histone methylation and RNA polymerase II to activate transcription. Mol. Cell Biol. 30(13), 3286–3298 (2010).
    • 240 Liu W, Tanasa B, Tyurina OV et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466(7305), 508–512 (2010).
    • 241 Kleine-Kohlbrecher D, Christensen J, Vandamme J et al. A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol. Cell 38(2), 165–178 (2010).
    • 242 Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I. PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat. Struct. Mol. Biol. 17(4), 445–450 (2010).
    • 243 Arteaga MF, Mikesch JH, Qiu J et al. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia. Cancer Cell 23(3), 376–389 (2013).
    • 244 Stender Jd, Pascual G, Liu W et al. Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol. Cell 48(1), 28–38 (2012).
    • 245 Huang C, Xiang Y, Wang Y et al. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res. 20(2), 154–165 (2010).
    • 246 Sinha S, Singh RK, Alam N, Roy A, Roychoudhury S, Panda CK. Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region. pathological significance in early- and late-onset breast carcinoma. Mol. Cancer 7, 84 (2008).
    • 247 Abidi F, Miano M, Murray J, Schwartz C. A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin. Genet. 72(1), 19–22 (2007).
    • 248 Koivisto AM, Ala-Mello S, Lemmela S, Komu HA, Rautio J, Jarvela I. Screening of mutations in the PHF8 gene and identification of a novel mutation in a Finnish family with XLMR and cleft lip/cleft palate. Clin. Genet. 72(2), 145–149 (2007).
    • 249 Laumonnier F, Holbert S, Ronce N et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42(10), 780–786 (2005).
    • 250 Siderius LE, Hamel BC, Van Bokhoven H et al. X-linked mental retardation associated with cleft lip/palate maps to Xp11.3-q21.3. Am. J. Med. Genet. 85(3), 216–220 (1999).
    • 251 Qiao Y, Liu X, Harvard C et al. Autism-associated familial microdeletion of Xp11.22. Clin. Genet. 74(2), 134–144 (2008).
    • 252 Nava C, Lamari F, Heron D et al. Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE. Transl Psychiatry 2, e179 (2012).
    • 253 Aragones J, Fraisl P, Baes M, Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab. 9(1), 11–22 (2009).
    • 254 Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5(5), 343–354 (2004).
    • 255 Melvin A, Mudie S, Rocha S. The chromatin remodeler ISWI regulates the cellular response to hypoxia: role of FIH. Mol. Biol.  22(21), 4171–4181 (2011).
    • 256 Zhang N, Fu Z, Linke S et al. The asparaginyl hydroxylase factor inhibiting HIF-1α is an essential regulator of metabolism. Cell Metabolism 11(5), 364–378 (2010).
    • 257 Liu C-J, Tsai M-M, Hung P-S et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Research 70(4), 1635–1644 (2010).
    • 258 Kroeze SGC, Vermaat JS, Van Brussel A et al. Expression of nuclear FIH independently predicts overall survival of clear cell renal cell carcinoma patients. Eur. J. Cancer 46(18), 3375–3382 (2010).
    • 259 Khan MN, Bhattacharyya T, Andrikopoulos P et al. Factor inhibiting HIF (FIH-1) promotes renal cancer cell survival by protecting cells from HIF-1[alpha]-mediated apoptosis. Br. J. Cancer 104(7), 1151–1159 (2011).
    • 260 Andersen S, Donnem T, Stenvold H et al. Overexpression of the HIF hydroxylases PHD1, PHD2, PHD3 and FIH are individually and collectively unfavorable prognosticators for NSCLC survival. PLoS ONE 6(8), e23847 (2011).
    • 261 Hyseni A, Groep P, Wall E, Diest P. Subcellular FIH-1 expression patterns in invasive breast cancer in relation to HIF-1α expression. Cell Oncol. 34(6), 565–570 (2011).
    • 262 Liu Y, Higashitsuji H, Higashitsuji H et al. Overexpression of gankyrin in mouse hepatocytes induces hemangioma by suppressing factor inhibiting hypoxia-inducible factor-1 (FIH-1) and activating hypoxia-inducible factor-1. Biochem. Biophys. Res. Comm. 432(1), 22–27 (2013).
    • 263 Tsuneoka M, Koda Y, Soejima M, Teye K, Kimura H. A novel myc target gene, mina53, that is involved in cell proliferation. J. Biol. Chem. 277(38), 35450–35459 (2002).
    • 264 Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene 27(50), 6462–6472 (2008).
    • 265 Lu Y, Chang Q, Zhang Y et al. Lung cancer-associated JmjC domain protein mdig suppresses formation of tri-methyl lysine 9 of histone H3. Cell Cycle 8(13), 2101–2109 (2009).
    • 266 Fukahori S, Yano H, Tsuneoka M et al. Immunohistochemical expressions of Cap43 and Mina53 proteins in neuroblastoma. J. Pediatric Surg. 42(11), 1831–1840 (2007).
    • 267 Ishizaki H, Yano H, Tsuneoka M et al. Overexpression of the myc target gene Mina53 in advanced renal cell carcinoma. Pathol. Int. 57(10), 672–680 (2007).
    • 268 Komiya K, Sueoka-Aragane N, Sato A et al. Expression of Mina53, a novel c-Myc target gene, is a favorable prognostic marker in early stage lung cancer. Lung Cancer 69(2), 232–238 (2010).
    • 269 Tan XP, Zhang Q, Dong WG, Lei XW, Yang ZR. Upregulated expression of Mina53 in cholangiocarcinoma and its clinical significance. Oncol. Lett. 3(5), 1037–1041 (2012).
    • 270 Teye K, Tsuneoka M, Arima N et al. Increased expression of a Myc target gene Mina53 in human colon cancer. Am. J. Pathol. 164(1), 205–216 (2004).
    • 271 Tsuneoka M, Fujita H, Arima N et al. Mina53 as a Potential Prognostic Factor for Esophageal Squamous Cell Carcinoma. Clin. Cancer Res. 10(21), 7347–7356 (2004).
    • 272 Tsuneoka M, Nishimune Y, Ohta K et al. Expression of Mina53, a product of a Myc target gene in mouse testis. Int. J. Androl. 29(2), 323–330 (2006).
    • 273 Zhang Y, Lu Y, Yuan BZ et al. The Human mineral dust-induced gene, mdig, is a cell growth regulating gene associated with lung cancer. Oncogene 24(31), 4873–4882 (2005).
    • 274 Mori T, Okamoto K, Tanaka Y et al. Ablation of mina53 in mice reduces allergic response in the airways. Cell Struct. Funct. 38(2), 155–167 (2013).
    • 275 Yosef N, Shalek Ak, Gaublomme JT et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496(7446), 461–468 (2013).
    • 276 Eilbracht J, Reichenzeller M, Hergt M et al. NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin. Mol Biol Cell 15(4), 1816–1832 (2004).
    • 277 Brien GL, Gambero G, O’Connell DJ et al. Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat. Struct. Mol. Biol. 19(12), 1273–1281 (2012).
    • 278 Tao Y, Wu M, Zhou X et al. Structural Insights into histone demethylase NO66 in interaction with osteoblast-specific transcription factor Osterix and gene repression. J. Biol. Chem. 288(23), 16430–16437 (2013).
    • 279 Suzuki C, Takahashi K, Hayama S et al. Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol. Cancer Ther. 6(2), 542–551 (2007).
    • 280 Jones MA, Covington MF, Ditacchio L, Vollmers C, Panda S, Harmer Sl. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc. Natl Acad. Sci. USA 107(50), 21623–21628 (2010).
    • 281 Oh S, Janknecht R. Histone demethylase JMJD5 is essential for embryonic development. Biochem. Biophys. Res. Comm. 420(1), 61–65 (2012).
    • 282 Ishimura A, Minehata K-I, Terashima M, Kondoh G, Hara T, Suzuki T. Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression. Development 139(4), 749–759 (2012).
    • 283 Cikala M, Alexandrova O, David CN et al. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity. BMC Cell Biol. 5, 26 (2004).
    • 284 Mantri M, Krojer T, Bagg EA et al. Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. J. Mol. Biol. 401(2), 211–222 (2010).
    • 285 Hong X, Zang J, White J et al. Interaction of JMJD6 with single-stranded RNA. Proc. Natl Acad. Sci. USA 107(33), 14568–14572 (2010).
    • 286 Bose J, Gruber AD, Helming L et al. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. J. Biol. 3(4), 15 (2004).
    • 287 Kunisaki Y, Masuko S, Noda M et al. Defective fetal liver erythropoiesis and T lymphopoiesis in mice lacking the phosphatidylserine receptor. Blood 103(9), 3362–3364 (2004).
    • 288 Schneider JE, Bose J, Bamforth SD et al. Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC Dev. Biol. 4, 16 (2004).
    • 289 Hahn P, Wegener I, Burrells A et al. Analysis of Jmjd6 cellular localization and testing for its involvement in histone demethylation. PLoS ONE 5(10), e13769 (2010).
    • 290 Lee Y, Miller L, Chan X et al. JMJD6 is a driver of cellular proliferation and motility and a marker of poor prognosis in breast cancer. Breast Cancer Res. 14(3), R85 (2012).
    • 291 Ghosh M, Loper R, Gelb Mh, Leslie Cc. Identification of the expressed form of human cytosolic phospholipase A2beta (cPLA2beta): cPLA2beta3 is a novel variant localized to mitochondria and early endosomes. J Biol Chem 281(24), 16615–16624 (2006).
    • 292 Ding X, Pan H, Li J et al. Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis. Sci. Signal. 6(273), ra28 21–13, S20–S15 (2013).
    • 293 Liu C, Gilmont Rr, Benndorf R, Welsh MJ. Identification and characterization of a novel protein from Sertoli cells, PASS1, that associates with mammalian small stress protein hsp27. J. Biol. Chem. 275(25), 18724–18731 (2000).
    • 294 Jiang M, Ma Y, Cheng H et al. Molecular cloning and characterization of a novel human gene (HSPBAP1) from human fetal brain. Cytogenet. Cell Genet. 95(1–2), 48–51 (2001).
    • 295 Srivastava AK, Renusch SR, Naiman NE et al. Mutant HSPB1 overexpression in neurons is sufficient to cause age-related motor neuronopathy in mice. Neurobiol. Dis. 47(2), 163–173 (2012).
    • 296 Xi ZQ, Sun JJ, Wang XF et al. HSPBAP1 is found extensively in the anterior temporal neocortex of patients with intractable epilepsy. Synapse 61(9), 741–747 (2007).
    • 297 Xi ZQ, Xiao F, Yuan J et al. Gene expression analysis on anterior temporal neocortex of patients with intractable epilepsy. Synapse 63(11), 1017–1028 (2009).
    • 298 Aas PA, Otterlei M, Falnes PO et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421(6925), 859–863 (2003).▪ Establishes the function of human ALKBH enzymes in DNA repair.
    • 299 Dango S, Mosammaparast N, Sowa ME et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol. Cell 44(3), 373–384 (2011).
    • 300 Fu D, Samson LD. Direct repair of 3,N(4)-ethenocytosine by the human ALKBH2 dioxygenase is blocked by the AAG/MPG glycosylase. DNA Repair (Amst.) 11(1), 46–52 (2012).
    • 301 Lee DH, Jin SG, Cai S, Chen Y, Pfeifer GP, O’connor TR. Repair of methylation damage in DNA and RNA by mammalian AlkB homologues. J. Biol. Chem. 280(47), 39448–39459 (2005).
    • 302 Muller TA, Meek K, Hausinger RP. Human AlkB homologue 1 (ABH1) exhibits DNA lyase activity at abasic sites. DNA Repair (Amst.) 9(1), 58–65 (2010).
    • 303 Westbye MP, Feyzi E, Aas PA et al. Human AlkB homolog 1 is a mitochondrial protein that demethylates 3-methylcytosine in DNA and RNA. J. Biol. Chem. 283(36), 25046–25056 (2008).
    • 304 Bethke L, Murray A, Webb E et al. Comprehensive analysis of DNA repair gene variants and risk of meningioma. J. Natl Cancer Inst. 100(4), 270–276 (2008).
    • 305 Fujii T, Shimada K, Anai S, Fujimoto K, Konishi N. ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression. Cancer Sci. 104(3), 321–327 (2013).
    • 306 Hu L, Wu C, Zhao X et al. Genome-wide association study of prognosis in advanced non-small cell lung cancer patients receiving platinum-based chemotherapy. Clin. Cancer Res. 18(19), 5507–5514 (2012).
    • 307 Johannessen TC, Prestegarden L, Grudic A, Hegi ME, Tysnes BB, Bjerkvig R. The DNA repair protein ALKBH2 mediates temozolomide resistance in human glioblastoma cells. Neuro Oncol. 15(3), 269–278 (2013).
    • 308 Koike K, Ueda Y, Hase H et al. anti-tumor effect of AlkB homolog 3 knockdown in hormone- independent prostate cancer cells. Curr. Cancer Drug Targets 12(7), 847–856 (2012).
    • 309 Shimada K, Fujii T, Tsujikawa K, Anai S, Fujimoto K, Konishi N. ALKBH3 contributes to survival and angiogenesis of human urothelial carcinoma cells through NADPH oxidase and tweak/Fn14/VEGF signals. Clin. Cancer Res. 18(19), 5247–5255 (2012).
    • 310 Tasaki M, Shimada K, Kimura H, Tsujikawa K, Konishi N. ALKBH3, a human AlkB homologue, contributes to cell survival in human non-small-cell lung cancer. Br. J. Cancer 104(4), 700–706 (2011).
    • 311 Yamato I, Sho M, Shimada K et al. PCA-1/ALKBH3 contributes to pancreatic cancer by supporting apoptotic resistance and angiogenesis. Cancer Res. 72(18), 4829–4839 (2012).
    • 312 Bjornstad LG, Meza TJ, Otterlei M, Olafsrud SM, Meza-Zepeda LA, Falnes PO. Human ALKBH4 interacts with proteins associated with transcription. PLoS ONE 7(11), e49045 (2012).
    • 313 Fu Y, He C. Nucleic acid modifications with epigenetic significance. Curr. Opin. Chem. Biol. 16(5–6), 516–524 (2012).
    • 314 Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation. Trends Genet. 29(2), 108–115 (2013).
    • 315 Jia G, Fu Y, Zhao X et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7(12), 885–887 (2011).▪▪ This series of papers establishes the 2-OG oxygenase FTO as risk factor of metabolic diseases and links them to N6-methyladenosine demethylation.
    • 316 Frayling TM, Timpson NJ, Weedon MN et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826), 889–894 (2007).▪▪ This series of papers establishes the 2-OG oxygenase FTO as risk factor of metabolic diseases and links them to N6-methyladenosine demethylation.
    • 317 Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS ONE 5(11), e14005 (2010).
    • 318 Do R, Bailey SD, Desbiens K et al. Genetic variants of FTO influence adiposity, insulin sensitivity, leptin levels, and resting metabolic rate in the Quebec Family Study. Diabetes 57(4), 1147–1150 (2008).
    • 319 Jacobsson JA, Klovins J, Kapa I et al. Novel genetic variant in FTO influences insulin levels and insulin resistance in severely obese children and adolescents. Int. J. Obes. (Lond.) 32(11), 1730–1735 (2008).
    • 320 Keller L, Xu W, Wang Hx, Winblad B, Fratiglioni L, Graff C. The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study. J. Alzheimers Dis. 23(3), 461–469 (2011).
    • 321 Lappalainen T, Kolehmainen M, Schwab US et al. Association of the FTO gene variant (rs9939609) with cardiovascular disease in men with abnormal glucose metabolism–the Finnish Diabetes Prevention Study. Nutr Metab Cardiovasc Dis 21(9), 691–698 (2011).
    • 322 Hubacek JA, Viklicky O, Dlouha D et al. The FTO gene polymorphism is associated with end-stage renal disease: two large independent case-control studies in a general population. Nephrol. Dial. Transplant 27(3), 1030–1035 (2012).
    • 323 Kaklamani V, Yi N, Sadim M et al. The role of the fat mass and obesity associated gene (FTO) in breast cancer risk. BMC Med. Genet. 12, 52 (2011).
    • 324 Tarabra E, Actis GC, Fadda M et al. The obesity gene and colorectal cancer risk: a population study in Northern Italy. Eur. J. Intern. Med. 23(1), 65–69 (2012).
    • 325 Boissel S, Reish O, Proulx K et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85(1), 106–111 (2009).
    • 326 Shimada K, Nakamura M, Anai S et al. A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression. Cancer Res. 69(7), 3157–3164 (2009).
    • 327 Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17(3), 637–641 (2003).▪▪ These papers collectively identify the 5-methylcytosine hydroxylases TET1-3 of critical importance in reversal of DNA methylation.
    • 328 Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62(14), 4075–4080 (2002).▪▪ These papers collectively identify the 5-methylcytosine hydroxylases TET1-3 of critical importance in reversal of DNA methylation.
    • 329 Pastor Wa, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14(6), 341–356 (2013).
    • 330 Abdel-Wahab O, Mullally A, Hedvat C et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 114(1), 144–147 (2009).
    • 331 Comuzzie Ag, Cole Sa, Laston Sl et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS ONE 7(12), e51954 (2012).
    • 332 Cao XJ, Arnaudo AM, Garcia BA. Large-scale global identification of protein lysine methylation in vivo. Epigenetics 8(5), 477–485 (2013).
    • 333 Chowdhury R, Yeoh KK, Tian YM et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12(5), 463–469 (2011).
    • 334 Watson JA, Watson CJ, Mccann A, Baugh J. Epigenetics, the epicenter of the hypoxic response. Epigenetics 5(4), 293–296 (2010).
    • 335 Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH. Too many roads not taken. Nature 470(7333), 163–165 (2011).