We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/epi.10.74

miRNA is a small ncRNA of 22–25 nucleotides, which leads to mRNA degradation or translational inhibition of its target genes. miRNAs are involved in multiple cellular processes, including cellular differentiation, proliferation and apoptosis, and hence miRNA deregulation has been implicated in disease states, including cancer. On the other hand, DNA methylation leads to gene silencing, and serves as an alternative mechanism of gene inactivation. The aberrant DNA methylation of gene promoters has been shown to result in the inactivation of tumor suppressor genes, and therefore is also implicated in carcinogenesis. This article focuses on the role of miRNA methylation, in particular miR-34a, in cancer. The article begins with an overview of DNA methylation in normal and cancer cells and deregulation of miRNA expression by DNA methylation. These discussions are followed by a description of the gene structure of the miR-34 family of miRNA genes, the tumor suppressor role of miR-34a and the deregulation of miR-34a by DNA methylation in both epithelial and hematological cancers. Moreover, the methylation of miR-34b/c in cancer is also described. Finally, the potential role of miRNA methylation as a biomarker for diagnosis, prognosis (and hence the potential of developing a risk-stratified approach) and a therapeutic target is discussed.

Bibliography

  • Esteller M: Epigenetics in cancer. N. Engl. J. Med.358(11),1148–1159 (2008).
  • Laird PW: Cancer epigenetics. Hum. Mol. Genet.14(Suppl. 1),R65–R76 (2005).
  • Robertson KD: DNA methylation and human disease. Nat. Rev. Genet.6(8),597–610 (2005).
  • Herman JG, Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349(21),2042–2054 (2003).
  • Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6),415–428 (2002).
  • Saxonov S, Berg P, Brutlag DL: A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA103(5),1412–1417 (2006).
  • Das PM, Singal R: DNA methylation and cancer. J. Clin. Oncol.22(22),4632–4642 (2004).
  • Fazzari MJ, Greally JM: Epigenomics: Beyond CpG islands. Nat. Rev. Genet.5(6),446–455 (2004).
  • Ioshikhes IP, Zhang MQ: Large-scale human promoter mapping using CpG islands. Nat. Genet.26(1),61–63 (2000).
  • 10  Kim TH, Barrera LO, Zheng M et al.: A high-resolution map of active promoters in the human genome. Nature436(7052),876–880 (2005).
  • 11  Chim CS, Liang R, Kwong YL: Hypermethylation of gene promoters in hematological neoplasia. Hematol. Oncol.20(4),167–176 (2002).
  • 12  Costello JF, Plass C: Methylation matters. J. Med. Genet.38(5),285–303 (2001).
  • 13  Bird A: Molecular biology: DNA methylation de novo. Science286(5448),2287–2288 (1999).
  • 14  Singal R, Ginder GD: DNA methylation. Blood93(12),4059–4070 (1999).
  • 15  Tuck-Muller CM, Narayan A, Tsien F et al.: DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet. Genome. Res.89(1–2),121–128 (2000).
  • 16  Rizwana R, Hahn PJ: CpG methylation reduces genomic instability. J. Cell Science112,4513–4519 (1999).
  • 17  Knudson AG: Two genetic hits (more or less) to cancer. Nat. Rev. Cancer1(2),157–162 (2001).
  • 18  Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2),281–297 (2004).
  • 19  Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat. Rev. Cancer6(11),857–866 (2006).
  • 20  Esquela-Kerscher A, Slack FJ: Oncomirs – microRNAs with a role in cancer. Nat. Rev. Cancer6(4),259–269 (2006).
  • 21  Chen CZ: MicroRNAs as oncogenes and tumor suppressors. N. Engl. J. Med.353(17),1768–1771 (2005).
  • 22  Guil S, Esteller M: DNA methylomes, histone codes and miRNAs: tying it all together. Int. J. Biochem. Cell Biol.41(1),87–95 (2009).
  • 23  Deng S, Calin GA, Croce CM, Coukos G, Zhang L: Mechanisms of microRNA deregulation in human cancer. Cell Cycle7(17),2643–2646 (2008).
  • 24  Lujambio A, Esteller M: CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle6(12),1455–1459 (2007).
  • 25  Saito Y, Liang G, Egger G et al.: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell9(6),435–443 (2006).
  • 26  Tarasov V, Jung P, Verdoodt B et al.: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle6(13),1586–1593 (2007).
  • 27  Chang TC, Wentzel EA, Kent OA et al.: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell26(5),745–752 (2007).
  • 28  Raver-Shapira N, Marciano E, Meiri E et al.: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell26(5),731–743 (2007).
  • 29  He L, He X, Lim LP et al.: A microRNA component of the p53 tumour suppressor network. Nature447(7148),1130–1134 (2007).
  • 30  Bommer GT, Gerin I, Feng Y et al.: p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol.17(15),1298–1307 (2007).
  • 31  Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY: MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res.67(18),8433–8438 (2007).
  • 32  Toyota M, Suzuki H, Sasaki Y et al.: Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res.68(11),4123–4132 (2008).
  • 33  Corney DC, Hwang C-I, Matoso A et al.: Frequent downregulation of miR-34 family in human ovarian cancers. Clin. Cancer Res.16(4),1119–1128 (2010).
  • 34  Dalgard Cl, Gonzalez M, Deniro JE, O’Brien JM: Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells. Invest. Ophthalmol. Vis. Sci.50(10),4542–4551 (2009).
  • 35  Duan W, Gao L, Wu X et al.: MicroRNA-34a is an important component of prima-1-induced apoptotic network in human lung cancer cells. Int. J. Cancer127(2),313–320 (2010).
  • 36  Kumamoto K, Spillare EA, Fujita K et al.: Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate miR-34a, miR-34b, and miR-34c expression, and induce senescence. Cancer Res.68(9),3193 (2008).
  • 37  Luan S, Sun L, Huang F: MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line u251. Arch. Med. Res.41(2),67–74 (2010).
  • 38  Zenz T, Habe S, Denzel T et al.: Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): Dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood114(13),2589–2597 (2009).
  • 39  Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J: MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk. Lymphoma50(3),506–509 (2009).
  • 40  Mraz M, Malinova K, Kotaskova J et al.: MiR-34a, miR-29c and miR-17–5p are downregulated in CLL patients with TP53 abnormalities. Leukemia23(6),1159–1163 (2009).
  • 41  Zenz T, Mohr J, Eldering E et al.: MiR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood113(16),3801–3808 (2009).
  • 42  Dijkstra MK, Van Lom K, Tielemans D et al.: 17p13/TP53 deletion in B-CLL patients is associated with microRNA-34a downregulation. Leukemia23(3),625–627 (2008).
  • 43  Ji Q, Hao X, Meng Y et al.: Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer8(1),266 (2008).
  • 44  Asslaber D, Pinon JD, Seyfried I et al.: MicroRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood115(21),4191–4197 (2010).
  • 45  Wang X, Wang HK, McCoy JP et al.: Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA15(4),637 (2009).
  • 46  Ito T, Yagi S, Yamakuchi M: MicroRNA-34a regulation of endothelial senescence. Biochem. Biophys. Res. Commun.398(4),735–740 (2010).
  • 47  Fujita Y, Kojima K, Hamada N et al.: Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem. Biophys. Res. Commun.377(1),114–119 (2008).
  • 48  Yamakuchi M, Ferlito M, Lowenstein CJ: MiR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci.105(36),13421–13426 (2008).
  • 49  Welch C, Chen Y, Stallings RL: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene26(34),5017–5022 (2007).
  • 50  Stallings RL, Nair P, Maris JM et al.: High-resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. Cancer Res.66(7),3673 (2006).
  • 51  Wei JS, Song YK, Durinck S et al.: The MYCN oncogene is a direct target of miR-34a. Oncogene27(39),5204–5213 (2008).
  • 52  Cole KA, Attiyeh EF, Mosse YP et al.: A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol. Cancer Res.6(5),735 (2008).
  • 53  Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the e2f pathway in human colon cancer cells. Proc. Natl Acad. Sci.104(39),15472–15477 (2007).
  • 54  Cheng J, Zhou L, Xie QF et al.: The impact of miR-34a on protein output in hepatocellular carcinoma HEPG2 cells. Proteomics10(8),1557–1572 (2010).
  • 55  Li N, Fu H, Tie Y et al.: MiR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett.275(1),44–53 (2009).
  • 56  Pang RT, Leung CO, Ye TM et al.: MicroRNA-34a suppresses invasion through downregulation of NOTCH1 and jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis31(6),1037–1044 (2010).
  • 57  Ichimura A, Ruike Y, Terasawa K, Shimizu K, Tsujimoto G: MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of k562 cells. Mol. Pharmacol.77(6),1016–1024 (2010).
  • 58  Navarro F, Gutman D, Meire E et al.: MiR-34a contributes to megakaryocytic differentiation of k562 cells independently of p53. Blood114(10),2181–2192 (2009).
  • 59  Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, Lee B: MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood114(2),404–414 (2009).
  • 60  Witwer KW, Sisk JM, Gama L, Clements JE: MicroRNA regulation of IFN-{β} protein expression: rapid and sensitive modulation of the innate immune response. J. Immunol.184(5),2369–2376 (2010).
  • 61  Hermeking H: The miR-34 family in cancer and apoptosis. Cell Death Differ.17(2),193–199 (2010).
  • 62  Lodygin D, Tarasov V, Epanchintsev A et al.: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle7(16),2591–2600 (2008).
  • 63  Gallardo E, Navarro A, Vinolas N et al.: MiR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis30(11),1903–1909 (2009).
  • 64  Chim CS, Wong KY, Qi Y et al.: Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis31(4),745–750 (2010).
  • 65  Peller S, Rotter V: TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum. Mutat.21(3),277–284 (2003).
  • 66  Lowe SW, Cepero E, Evan G: Intrinsic tumour suppression. Nature432(7015),307–315 (2004).
  • 67  Kozaki K-I, Imoto I, Mogi S, Omura K, Inazawa J: Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res.68(7),2094–2105 (2008).
  • 68  Roman-Gomez J, Agirre X, Jimenez-Velasco A et al.: Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J. Clin. Oncol.27,1316–1322 (2009).
  • 69  Meek DW: Tumour suppression by p53: a role for the DNA damage response? Nat. Rev. Cancer9(10),714–723 (2009).
  • 70  Soussi T, Beroud C: Assessing TP53 status in human tumours to evaluate clinical outcome. Nat. Rev. Cancer1(3),233–239 (2001).
  • 71  Kastan MB, Bartek J: Cell-cycle checkpoints and cancer. Nature432(7015),316–323 (2004).
  • 72  Moll UM, Petrenko O: The MDM2-p53 interaction. Mol. Cancer Res.1(14),1001–1008 (2003).
  • 73  Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL: SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the JAK/STAT pathway. Blood103(12),4630–4635 (2004).
  • 74  Chim CS, Liang R, Tam CYY, Kwong YL: Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J. Clin. Oncol.19(7),2033–2040 (2001).
  • 75  Chim CS, Wong ASY, Kwong YL: Epigenetic dysregulation of the JAK/STAT pathway by frequent aberrant methylation of SHP1 but not SOCS1 in acute leukaemias. Ann. Hematol.83(8),527–532 (2004).
  • 76  Chim CS, Wong KY, Loong F, Lam WW, Srivastava G: Frequent epigenetic inactivation of Rb1 in addition to p15 and p16 in mantle cell and follicular lymphoma. Hum. Pathol.38(12),1849–1857 (2007).
  • 77  Chim CS, Wong SY, Pang A et al.: Aberrant promoter methylation of the retinoic acid receptor α gene in acute promyelocytic leukemia. Leukemia19(12),2241–2246 (2005).
  • 78  Chim CS, Kwong YL: Adverse prognostic impact of CDKN2B hyper-methylation in acute promyelocytic leukemia. Leuk. Lymphoma47(5),815–825 (2006).
  • 79  Chim CS, Lau JS, Wong KF, Kwong YL: Cdkn2b methylation is an independent poor prognostic factor in newly diagnosed acute promyelocytic leukemia. Leukemia20(1),149–151 (2005).
  • 80  Chim CS, Liang R, Leung MH, Yip SF, Kwong YL: Aberrant gene promoter methylation marking disease progression in multiple myeloma. Leukemia20(6),1190–1192 (2006).
  • 81  Chim CS, Ma SY, Au WY et al.: Primary nasal natural killer cell lymphoma: long-term treatment outcome and relationship with the international prognostic index. Blood103(1),216–221 (2004).
  • 82  Chim CS, Tam CYY, Liang R, Kwong Yl: Methylation of p15 and p16 genes in adult acute leukemia. Cancer91(12),2222–2229 (2001).
  • 83  Chim CS, Wong SY, Kwong YL: Aberrant gene promoter methylation in acute promyelocytic leukaemia: profile and prognostic significance. Br. J. Haematol.122(4),571–578 (2003).
  • 84  Chim CS, Wong ASY, Kwong YL: Infrequent hypermethylation of cebpa promotor in acute myeloid leukaemia. Br. J. Haematol119(4),988–990 (2002).
  • 85  Chim CS, Chan WWL, Pang A, Kwong YL: Preferential methylation of Wnt inhibitory factor-1 in acute promyelocytic leukemia: an independent poor prognostic factor. Leukemia20(5),907–909 (2006).
  • 86  Chim CS, Liang R, Fung TK, Choi CL, Kwong YL: Epigenetic dysregulation of the death-associated protein kinase/p14/hdm2/p53/apaf-1 apoptosis pathway in multiple myeloma. J. Clin. Pathol.60(6),664–669 (2007).
  • 87  Zenz T, Dohner H, Stilgenbauer S: Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best Pract. Res. Clin. Haematol.20(3),439–453 (2007).
  • 88  Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T: Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene27(3),378–386 (2007).
  • 89  Lehmann U, Hasemeier B, Christgen M et al.: Epigenetic inactivation of microRNA gene hsa-miR-9-1 in human breast cancer. J. Path.214(1),17–24 (2008).
  • 90  Wilting S, Van Boerdonk R, Henken F et al.: Methylation-mediated silencing and tumour suppressive function of hsa-mir-124 in cervical cancer. Mol. Cancer9(1), 167 (2010).
  • 91  Bandres E, Agirre X, Bitarte N et al.: Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer125(11),2737–2743 (2009).
  • 92  Lujambio A, Ropero S, Ballestar E et al.: Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res.67(4),1424–1429 (2007).
  • 93  Balaguer F, Link A, Lozano JJ et al.: Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res.70(16),6609–6618 (2010).
  • 94  Grady WM, Parkin RK, Mitchell PS et al.: Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene27(27),3880–3888 (2008).
  • 95  Huang Y-W, Liu JC, Deatherage DE et al.: Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res.69(23),9038–9046 (2009).
  • 96  Vrba L, Jensen TJ, Garbe JC et al.: Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS ONE5(1),e8697 (2010).
  • 97  Shen R, Pan S, Qi S, Lin X, Cheng S: Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem. Biophys. Res. Commun.394(4),1047–1052 (2010).
  • 98  Tsai K-W, Hu L-Y, Wu C-W et al.: Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer49(11),969–980 (2010).
  • 99  Saito Y, Suzuki H, Tsugawa H et al.: Chromatin remodeling at ALU repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene28(30),2738–2744 (2009).
  • 100  Datta J, Kutay H, Nasser MW et al.: Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res.68(13),5049–5058 (2008).
  • 101  Lee KH, Lotterman C, Karikari C et al.: Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology9(3),293–301 (2009).
  • 102  Rauhala HE, Jalava SE, Isotalo J et al.: MiR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int. J. Cancer127(6),1363–1372 (2010).
  • 103  Agirre X, Vilas-Zornoza A, Jimenez-Velasco A et al.: Epigenetic silencing of the tumor suppressor microRNA hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res.69(10),4443–4453 (2009).
  • 104  Bueno MJ, Perez De Castro I, Gomez De Cedron M et al.: Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell13(6),496–506 (2008).