We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

A comprehensive review of m6A research in cervical cancer

    Jing Hu‡

    Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Shizhi Wang‡

    *Author for correspondence:

    E-mail Address: shizhiwang2009@seu.edu.cn

    Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China

    ‡Authors contributed equally

    Search for more papers by this author

    &
    Xiuting Li

    **Author for correspondence:

    E-mail Address: xiutingli2016@yeah.net

    Department of Public Health, Jiangsu Health Vocational College, Nanjing, 210000, China

    Published Online:https://doi.org/10.2217/epi-2024-0002

    Cervical cancer (CC) remains one of the most common malignancies among women worldwide, posing a serious threat to women's health. N6-methyladenosine (m6A) modification, as the most abundant type of RNA methylation modification, and has been found to play a crucial role in various cancers. Current research suggests a close association between RNA m6A modification and the occurrence and progression of CC, encompassing disruptions in m6A levels and its regulatory machinery. This review summarizes the current status of m6A modification research in CC, explores the mechanisms underlying m6A levels and regulators (methyltransferases, demethylases, reader proteins) in CC and examines the application of small-molecule inhibitors of m6A regulators in disease treatment. The findings provide new insights into the future treatment of CC.

    Tweetable abstract

    The m6A modification participates in regulating the proliferation, migration, invasion, cell cycle, apoptosis, drug resistance and sensitivity to chemotherapy in cervical cancer cells.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Cao W, Chen HD, Yu YW et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl) 2021;134(7):783–791. doi:10.1097/CM9.0000000000001474
    • 2. Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
    • 3. O'Mara TA, Zhao M, Spurdle AB. Meta-analysis of gene expression studies in endometrial cancer identifies gene expression profiles associated with aggressive disease and patient outcome. Sci. Rep. 2016;6:36677. doi:10.1038/srep36677
    • 4. Coutinho F, Gokhale M, Doran C et al. Characteristics, treatment patterns, and outcomes in patients with high-risk locally advanced cervical cancer. Cancer Treat. Res. Commun. 2024;39:100800. doi:10.1016/j.ctarc.2024.100800
    • 5. Jiang T, Zhou B, Li YM et al. ALOX12B promotes carcinogenesis in cervical cancer by regulating the PI3K/ERK1 signaling pathway. Oncol. Lett. 2020;20(2):1360–1368. doi:10.3892/ol.2020.11641
    • 6. Jiang X, Liu B, Nie Z et al. The role of m6A modification in the biological functions and diseases. Signal. Transduct. Target Ther. 2021;6(1):74. doi:10.1038/s41392-020-00450-x
    • 7. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell. 2019;74(4):640–650. doi:10.1016/j.molcel.2019.04.025
    • 8. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 1974;71(10):3971–3975. doi:10.1073/pnas.71.10.3971
    • 9. Yang Y, Hsu PJ, Chen YS et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28(6):616–624. doi:10.1038/s41422-018-0040-8
    • 10. Du H, Zhao Y, He J et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 2016;7:12626. doi:10.1038/ncomms12626
    • 11. Huang H, Weng H, Sun W et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 2018;20(3):285–295. doi:10.1038/s41556-018-0045-z
    • 12. Meyer KD, Saletore Y, Zumbo P et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′-UTRs and near stop codons. Cell 2012;149(7):1635–1646. doi:10.1016/j.cell.2012.05.003
    • 13. Liu T, Wei Q, Jin J et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48(7):3816–3831. doi:10.1093/nar/gkaa048
    • 14. Zhang B, Jiang H, Dong Z et al. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis. 2021;8(6):746–758. doi:10.1016/j.gendis.2020.07.011
    • 15. Chen J, Fang Y, Xu Y et al. Role of m6A modification in female infertility and reproductive system diseases. Int. J. Biol. Sci. 2022;18(9):3592–3604. doi:10.7150/ijbs.69771
    • 16. Zhang N, Ding C, Zuo Y et al. N6-methyladenosine and neurological diseases. Mol. Neurobiol. 2022;59(3):1925–1937. doi:10.1007/s12035-022-02739-0
    • 17. Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med. 2018;7(10):5217–5236. doi:10.1002/cam4.1501
    • 18. Johnson CA, James D, Marzan A et al. Cervical cancer: an overview of pathophysiology and management. Semin. Oncol. Nurs. 2019;35(2):166–174. doi:10.1016/j.soncn.2019.02.003
    • 19. Cohen PA, Jhingran A, Oaknin A et al. Cervical cancer. Lancet 2019;393(10167):169–182. doi:10.1016/S0140-6736(18)32470-X
    • 20. Holowaty P, Miller AB, Rohan T et al. Natural history of dysplasia of the uterine cervix. J. Natl Cancer Inst. 1999;91(3):252–258. doi:10.1093/jnci/91.3.252
    • 21. Gopu P, Antony F, Cyriac S et al. Updates on systemic therapy for cervical cancer. Indian J. Med. Res. 2021;154(2):293–302. doi:10.4103/ijmr.IJMR_4454_20
    • 22. Lanciano R, Calkins A, Bundy BN et al. Randomized comparison of weekly cisplatin or protracted venous infusion of fluorouracil in combination with pelvic radiation in advanced cervix cancer: a gynecologic oncology group study. J. Clin. Oncol. 2005;23(33):8289–8295. doi:10.1200/JCO.2004.00.0497
    • 23. Revathidevi S, Murugan AK, Nakaoka H et al. APOBEC: a molecular driver in cervical cancer pathogenesis. Cancer Lett. 2021;496:104–116. doi:10.1016/j.canlet.2020.10.004
    • 24. Fang J, Zhang H, Jin S. Epigenetics and cervical cancer: from pathogenesis to therapy. Tumour Biol. 2014;35(6):5083–5093. doi:10.1007/s13277-014-1737-z
    • 25. Oerum S, Meynier V, Catala M et al. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49(13):7239–7255. doi:10.1093/nar/gkab378
    • 26. An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 2022;21(1):14. doi:10.1186/s12943-022-01500-4
    • 27. Liu ZX, Li LM, Sun HL et al. Link between m6A modification and cancers. Front. Bioeng. Biotechnol. 2018;6:89. doi:10.3389/fbioe.2018.00089
    • 28. Guo J, Zheng J, Zhang H et al. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int. 2021;21(1):609. doi:10.1186/s12935-021-02318-8
    • 29. Shen S, Guo J, Lv N et al. RNA m6A methylation regulators in endometrial cancer (Review). Int. J. Oncol. 2022;61(6):155. doi:10.3892/ijo.2022.5445
    • 30. Zhou H, Yin K, Zhang Y et al. The RNA m6A writer METTL14 in cancers: roles, structures, and applications. Biochim. Biophys. Acta Rev. Cancer. 2021;1876(2):188609. doi:10.1016/j.bbcan.2021.188609
    • 31. Wang X, Huang J, Zou T et al. Human m(6)A writers: two subunits, 2 roles. RNA Biol. 2017;14(3):300–304. doi:10.1080/15476286.2017.1282025
    • 32. Wang T, Kong S, Tao M et al. The potential role of RNA N6-methyladenosine in cancer progression. Mol. Cancer 2020;19(1):88. doi:10.1186/s12943-020-01204-7
    • 33. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 2019;20(10):608–624. doi:10.1038/s41580-019-0168-5
    • 34. Ping XL, Sun BF, Wang L et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–189. doi:10.1038/cr.2014.3
    • 35. Yue Y, Liu J, Cui X et al. VIRMA mediates preferential m(6)A mRNA methylation in 3′-UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10. doi:10.1038/s41421-018-0019-0
    • 36. Garcias Morales D, Reyes JL. A birds'-eye view of the activity and specificity of the mRNA m(6) A methyltransferase complex. Wiley Interdiscip. Rev. RNA 2021;12(1):e1618. doi:10.1002/wrna.1618
    • 37. Patil DP, Chen CK, Pickering BF et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016;537(7620):369–373. doi:10.1038/nature19342
    • 38. Bawankar P, Lence T, Paolantoni C et al. Hakai is required for stabilization of core components of the m(6)A mRNA methylation machinery. Nat. Commun. 2021;12(1):3778. doi:10.1038/s41467-021-23892-5
    • 39. Horiuchi K, Kawamura T, Iwanari H et al. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem. 2013;288(46):33292–33302. doi:10.1074/jbc.M113.500397
    • 40. Wen J, Lv R, Ma H et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 2018;69(6):1028–1038.e6. doi:10.1016/j.molcel.2018.02.015
    • 41. Knuckles P, Lence T, Haussmann IU et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery component Wtap/Fl(2)d. Genes Dev. 2018;32(5–6):415–429. doi:10.1101/gad.309146.117
    • 42. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed. Pharmacother. 2019;112:108613. doi:10.1016/j.biopha.2019.108613
    • 43. Xiao MZ, Liu JM, Xian CL et al. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed. Pharmacother. 2020;131:110645. doi:10.1016/j.biopha.2020.110645
    • 44. Fedeles BI, Singh V, Delaney JC et al. The AlkB family of Fe(II)/alpha-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J. Biol. Chem. 2015;290(34):20734–20742. doi:10.1074/jbc.R115.656462
    • 45. Jia G, Fu Y, Zhao X et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011;7(12):885–887. doi:10.1038/nchembio.687
    • 46. Li Y, Su R, Deng X et al. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 2022;8(7):598–614. doi:10.1016/j.trecan.2022.02.010
    • 47. Wei C, Wang B, Peng D et al. Pan-cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including gliomas. Front. Immunol. 2022;13:849592. doi:10.3389/fimmu.2022.849592
    • 48. Wei J, Liu F, Lu Z et al. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 2018;71(6):973–985.e5. doi:10.1016/j.molcel.2018.08.011
    • 49. Zheng G, Dahl JA, Niu Y et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 2013;49(1):18–29. doi:10.1016/j.molcel.2012.10.015
    • 50. Xu Y, Zhang W, Shen F et al. YTH domain proteins: a family of m(6)A readers in cancer progression. Front. Oncol. 2021;11:629560. doi:10.3389/fonc.2021.629560
    • 51. Wang X, Zhao BS, Roundtree IA et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161(6):1388–1399. doi:10.1016/j.cell.2015.05.014
    • 52. Wang X, Lu Z, Gomez A et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505(7481):117–120. doi:10.1038/nature12730
    • 53. Li A, Chen YS, Ping XL et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27(3):444–447. doi:10.1038/cr.2017.10
    • 54. Xiao W, Adhikari S, Dahal U et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell 2016;61(4):507–519. doi:10.1016/j.molcel.2016.01.012
    • 55. Hsu PJ, Zhu Y, Ma H et al. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27(9):1115–1127. doi:10.1038/cr.2017.99
    • 56. Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin. Cancer Biol. 2022;86(Pt 3):18–31. doi:10.1016/j.semcancer.2022.05.009
    • 57. Mu H, Cai S, Wang X et al. RNA binding protein IGF2BP1 meditates oxidative stress-induced granulosa cell dysfunction by regulating MDM2 mRNA stability in an m(6)A-dependent manner. Redox. Biol. 2022;57:102492. doi:10.1016/j.redox.2022.102492
    • 58. Yu D, Pan M, Li Y et al. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J. Exp. Clin. Cancer Res. 2022;41(1):6. doi:10.1186/s13046-021-02212-1
    • 59. Zhang N, Shen Y, Li H et al. The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability. Exp. Mol. Med. 2022;54(2):194–205. doi:10.1038/s12276-022-00735-x
    • 60. Jiang F, Tang X, Tang C et al. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J. Hematol. Oncol. 2021;14(1):54. doi:10.1186/s13045-021-01066-6
    • 61. Alarcon CR, Goodarzi H, Lee H et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 2015;162(6):1299–1308. doi:10.1016/j.cell.2015.08.011
    • 62. Huang XT, Li JH, Zhu XX et al. HNRNPC impedes m(6)A-dependent anti-metastatic alternative splicing events in pancreatic ductal adenocarcinoma. Cancer Lett. 2021;518:196–206. doi:10.1016/j.canlet.2021.07.016
    • 63. Zhou KI, Shi H, Lyu R et al. Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol. Cell 2019;76(1):70–81.e9. doi:10.1016/j.molcel.2019.07.005
    • 64. Yang F, Jin H, Que B et al. Dynamic m(6)A mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 2019;38(24):4755–4772. doi:10.1038/s41388-019-0755-0
    • 65. Chen M, Wei L, Law CT et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018;67(6):2254–2270. doi:10.1002/hep.29683
    • 66. He L, Li H, Wu A et al. Functions of N6-methyladenosine and its role in cancer. Mol. Cancer 2019;18(1):176. doi:10.1186/s12943-019-1109-9
    • 67. Weng H, Huang H, Wu H et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell. 2018;22(2):191–205.e9. doi:10.1016/j.stem.2017.11.016
    • 68. Liu J, Eckert MA, Harada BT et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol. 2018;20(9):1074–1083. doi:10.1038/s41556-018-0174-4
    • 69. Ma Z, Li Q, Liu P et al. METTL3 regulates m6A in endometrioid epithelial ovarian cancer independently of METTl14 and WTAP. Cell Biol. Int. 2020;44(12):2524–2531. doi:10.1002/cbin.11459
    • 70. Liang S, Guan H, Lin X et al. METTL3 serves an oncogenic role in human ovarian cancer cells partially via the AKT signaling pathway. Oncol. Lett. 2020;19(4):3197–3204. doi:10.3892/ol.2020.11425
    • 71. Jiang Y, Wan Y, Gong M et al. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-kappaB pathway. J. Cell Mol. Med. 2020;24(11):6137–6148. doi:10.1111/jcmm.15228
    • 72. Li J, Wu L, Pei M et al. YTHDF2, a protein repressed by miR-145, regulates proliferation, apoptosis, and migration in ovarian cancer cells. J. Ovarian Res. 2020;13(1):111. doi:10.1186/s13048-020-00717-5
    • 73. Li Q, Wang C, Dong W et al. WTAP facilitates progression of endometrial cancer via CAV-1/NF-kappaB axis. Cell Biol. Int. 2021;45(6):1269–1277. doi:10.1002/cbin.11570
    • 74. Zhang L, Wan Y, Zhang Z et al. FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway. RNA Biol. 2021;18(9):1265–1278. doi:10.1080/15476286.2020.1841458
    • 75. Zhang L, Wan Y, Zhang Z et al. IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression. Theranostics 2021;11(3):1100–1114. doi:10.7150/thno.49345
    • 76. Zeng C, Huang W, Li Y et al. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J. Hematol. Oncol. 2020;13(1):117. doi:10.1186/s13045-020-00951-w
    • 77. Ni HH, Zhang L, Huang H et al. Connecting METTL3 and intratumoural CD33(+) MDSCs in predicting clinical outcome in cervical cancer. J. Transl. Med. 2020;18(1):393. doi:10.1186/s12967-020-02553-z
    • 78. Wang Q, Guo X, Li L et al. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11(10):911. doi:10.1038/s41419-020-03071-y
    • 79. Li Z, Peng Y, Li J et al. N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat. Commun. 2020;11(1):2578. doi:10.1038/s41467-020-16306-5
    • 80. Du QY, Huo FC, Du WQ et al. METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene 2022;41(39):4420–4432. doi:10.1038/s41388-022-02435-2
    • 81. Li H, Zhong Y, Cao G et al. METTL3 promotes cell cycle progression via m(6)A/YTHDF1-dependent regulation of CDC25B translation. Int. J. Biol. Sci. 2022;18(8):3223–3236. doi:10.7150/ijbs.70335
    • 82. Yu T, Wu F, Jia Y et al. RNA N(6)-methyladenosine modification mediates downregulation of NR4A1 to facilitate malignancy of cervical cancer. Cell Biosci. 2022;12(1):207. doi:10.1186/s13578-022-00937-w
    • 83. Su C, Zhang Y, Chen P et al. Methyltransferase-like 3 induces the development of cervical cancer by enhancing insulin-like growth factor 2 mRNA-binding proteins 3-mediated apoptotic chromatin condensation inducer 1 mRNA stability. Bioengineered 2022;13(3):7034–7048. doi:10.1080/21655979.2022.2044261
    • 84. Shen W, Zhu M, Wang Q et al. DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m(6)A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biol. 2022;19(1):751–763. doi:10.1080/15476286.2022.2079889 • The research describes a protective autophagy induced by the HIF1α/DARS-AS1/DARS axis in cervical cancer cells under hypoxic conditions. The article mentions a method to create a hypoxic environment (94% N2, 5% CO2, and 1% O2 were used for culturing HeLa and C33A cells for indicated time periods). The establishment of a hypoxic environment may be applicable for future experimental research.
    • 85. Li J, Xie G, Tian Y et al. RNA m(6)A methylation regulates dissemination of cancer cells by modulating expression and membrane localization of beta-catenin. Mol. Ther. 2022;30(4):1578–1596. doi:10.1016/j.ymthe.2022.01.019
    • 86. Liu P, Ju M, Zheng X et al. Methyltransferase-like 3 promotes cervical cancer metastasis by enhancing cathepsin L mRNA stability in an N6-methyladenosine-dependent manner. Cancer Sci. 2023;114(3):837–854. doi:10.1111/cas.15658
    • 87. Yu R, Wei Y, He C et al. Integrative analyses of m6A regulators identify that METTL3 is associated with HPV status and immunosuppressive microenvironment in HPV-related cancers. Int. J. Biol. Sci. 2022;18(9):3874–3887. doi:10.7150/ijbs.70674
    • 88. Huang C, Liang J, Lin S et al. N(6)-methyladenosine associated silencing of miR-193b promotes cervical cancer aggressiveness by targeting CCND1. Front. Oncol. 2021;11:666597. doi:10.3389/fonc.2021.666597
    • 89. Ji F, Lu Y, Chen S et al. m(6)A methyltransferase METTL3-mediated lncRNA FOXD2-AS1 promotes the tumorigenesis of cervical cancer. Mol. Ther. Oncolytics 2021;22:574–581. doi:10.1016/j.omto.2021.07.004
    • 90. Yang Z, Ma J, Han S et al. ZFAS1 exerts an oncogenic role via suppressing miR-647 in an m(6)A-dependent manner in cervical cancer. Onco. Targets Ther. 2020;13:11795–11806. doi:10.2147/OTT.S274492
    • 91. Shen G, Li F, Wang Y et al. New insights on the interaction between m(6)A modification and noncoding RNA in cervical squamous cell carcinoma. World J. Surg. Oncol. 2023;21(1):25. doi:10.1186/s12957-023-02907-z
    • 92. Shen S, Jin H, Zhang X et al. LINC00426, a novel m(6)A-regulated long noncoding RNA, induces EMT in cervical cancer by binding to ZEB1. Cell. Signal. 2023;109:110788. doi:10.1016/j.cellsig.2023.110788
    • 93. Zhao J, Lee EE, Kim J et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun. 2019;10(1):2300. doi:10.1038/s41467-019-10246-5
    • 94. Shi J, Rui X, Han C et al. circRNF13, a novel N(6)-methyladenosine-modified circular RNA, enhances radioresistance in cervical cancer by increasing CXCL1 mRNA stability. Cell Death Discov. 2023;9(1):253. doi:10.1038/s41420-023-01557-0
    • 95. Guan Q, Lin H, Miao L et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J. Hematol. Oncol. 2022;15(1):13. doi:10.1186/s13045-022-01231-5
    • 96. Geng F, Fan MJ, Li J et al. Knockdown of METTL14 inhibits the growth and invasion of cervical cancer. Transl. Cancer Res. 2019;8(6):2307–2315. doi:10.21037/tcr.2019.09.48
    • 97. Hu C, Liu T, Xu Y et al. METTL14 promotes the proliferation and migration of cervical cancer cells by up-regulating m(6)A Myc expression. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2022;38(2):131–137. Chinese.
    • 98. Xie Q, Li Z, Luo X et al. piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m6A RNA methylation manner. J Transl Med. 2022;20(1):51. doi:10.1186/s12967-022-03257-2 • Describes a mechanism wherein piRNAs collaborate with m6A regulation in cervical cancer. Research on piRNAs in cervical cancer remains relatively limited, representing a novel perspective.
    • 99. Zhang X, Li MJ, Xia L et al. The biological function of m6A methyltransferase KIAA1429 and its role in human disease. Peer J. 2022;10:e14334. doi:10.7717/peerj.14334
    • 100. Ma X, Li Y, Wen J et al. m6A RNA methylation regulators contribute to malignant development and have a clinical prognostic effect on cervical cancer. Am. J. Transl. Res. 2020;12(12):8137–8146.
    • 101. Cai X, Chen Y, Man D et al. RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discov. 2021;7(1):315. doi:10.1038/s41420-021-00703-w
    • 102. Zhang C, Gu L, Xiao J et al. Knockdown of RBM15 inhibits tumor progression and the JAK-STAT signaling pathway in cervical cancer. BMC Cancer 2023;23(1):684. doi:10.1186/s12885-023-11163-z
    • 103. Song Y, Wu Q. RBM15 m(6)A modification-mediated OTUB2 upregulation promotes cervical cancer progression via the AKT/mTOR signaling. Environ. Toxicol. 2023;38(9):2155–2164. doi:10.1002/tox.23852
    • 104. Nie G, Tang B, Lv M et al. HPV E6 promotes cell proliferation of cervical cancer cell by accelerating accumulation of RBM15 dependently of autophagy inhibition. Cell Biol. Int. 2023;47(8):1327–1343. doi:10.1002/cbin.12020
    • 105. Lu X, Li R, Ying Y et al. Gene signatures, immune infiltration, and drug sensitivity based on a comprehensive analysis of m6A RNA methylation regulators in cervical cancer. J. Transl. Med. 2022;20(1):385. doi:10.1186/s12967-022-03600-7
    • 106. Pan J, Xu L, Pan H. Development and validation of an m6A RNA methylation regulator-based signature for prognostic prediction in cervical squamous cell carcinoma. Front. Oncol. 2020;10:1444. doi:10.3389/fonc.2020.01444
    • 107. Lin X, Wang F, Chen J et al. N(6)-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil. Med. Res. 2022;9(1):19. doi:10.1186/s40779-022-00378-z
    • 108. Liu C, Li Y, Dong C et al. E6E7 regulates the HK2 expression in cervical cancer via GSK3beta/FTO signal. Arch. Biochem. Biophys. 2022;729:109389. doi:10.1016/j.abb.2022.109389
    • 109. Huang J, Yang J, Zhang Y et al. FTO promotes cervical cancer cell proliferation, colony formation, migration and invasion via the regulation of the BMP4/Hippo/YAP1/TAZ pathway. Exp. Cell Res. 2023;427(1):113585. doi:10.1016/j.yexcr.2023.113585
    • 110. Zou D, Dong L, Li C et al. The m(6)A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell Int. 2019;19:321. doi:10.1186/s12935-019-1045-1
    • 111. Wang A, Jin C, Wang Y et al. FTO promotes the progression of cervical cancer by regulating the N6-methyladenosine modification of ZEB1 and Myc. Mol. Carcinog. 2023;62(8):1228–1237. doi:10.1002/mc.23559
    • 112. Wang T, Li W, Ye B et al. FTO-stabilized lncRNA HOXC13-AS epigenetically upregulated FZD6 and activated Wnt/beta-catenin signaling to drive cervical cancer proliferation, invasion, and EMT. J. BUON 2021;26(4):1279–1291. https://www.jbuon.com/archive/26-4-1279.pdf117
    • 113. Zhou S, Bai ZL, Xia D et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation. Mol. Carcinog. 2018;57(5):590–597. doi:10.1002/mc.22782
    • 114. Qu J, Yan H, Hou Y et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J. Hematol. Oncol. 2022;15(1):8. doi:10.1186/s13045-022-01224-4
    • 115. Huo FC, Zhu ZM, Du WQ et al. HPV E7-drived ALKBH5 promotes cervical cancer progression by modulating m6A modification of PAK5. Pharmacol. Res. 2023;195:106863. doi:10.1016/j.phrs.2023.106863
    • 116. Zhen L, Pan W. ALKBH5 inhibits the SIRT3/ACC1 axis to regulate fatty acid metabolism via an m6A-IGF2BP1-dependent manner in cervical squamous cell carcinoma. Clin. Exp. Pharmacol. Physiol. 2023;50(5):380–392. doi:10.1111/1440-1681.13754
    • 117. Wang X, Zhang J, Wang Y. Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability. Am. J. Transl. Res. 2019;11(8):4909–4921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731424/
    • 118. Chen Z, Zhong X, Xia M et al. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol. Ther. Nucleic Acids. 2021;26:1270–1279. doi:10.1016/j.omtn.2021.10.023
    • 119. Wang H, Luo Q, Kang J et al. YTHDF1 aggravates the progression of cervical cancer through m(6)A-mediated up-regulation of RANBP2. Front. Oncol. 2021;11:650383. doi:10.3389/fonc.2021.650383
    • 120. Wang JY, Lu AQ. The biological function of m6A reader YTHDF2 and its role in human disease. Cancer Cell Int. 2021;21(1):109. doi:10.1186/s12935-021-01807-0
    • 121. Liang L, Zhu Y, Li J et al. ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. J. Exp. Clin. Cancer Res. 2022;41(1):261. doi:10.1186/s13046-022-02462-7
    • 122. Wu M, Chen G, Liao X et al. YTHDF2 interference suppresses the EMT of cervical cancer cells and enhances cisplatin chemosensitivity by regulating AXIN1. Drug Dev. Res. 2022;83(5):1190–1200. doi:10.1002/ddr.21942
    • 123. Shi H, Wang X, Lu Z et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–328. doi:10.1038/cr.2017.15
    • 124. Du H, Zou NY, Zuo HL et al. YTHDF3 mediates HNF1alpha regulation of cervical cancer radio-resistance by promoting RAD51D translation in an m6A-dependent manner. FEBS J. 2023;290(7):1920–1935. doi:10.1111/febs.16681
    • 125. Condic M, Ralser DJ, Klumper N et al. Comprehensive analysis of N6-methyladenosine (m6A) writers, erasers, and readers in cervical cancer. Int. J. Mol. Sci. 2022;23(13):7165. doi:10.3390/ijms23137165
    • 126. Ma C, Liao S, Zhu Z. Crystal structure of human YTHDC2 YTH domain. Biochem. Biophys. Res. Commun. 2019;518(4):678–684. doi:10.1016/j.bbrc.2019.08.107
    • 127. Zhang C, Guo C, Li Y et al. The role of YTH domain containing 2 in epigenetic modification and immune infiltration of pan-cancer. J. Cell. Mol. Med. 2021;25(18):8615–8627. doi:10.1111/jcmm.16818
    • 128. Sun CY, Cao D, Du BB et al. The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m(6)A readers in cancer. Int. J. Biol. Sci. 2022;18(7):2744–2758. doi:10.7150/ijbs.70458
    • 129. Wang L, Zhan G, Maimaitiyiming Y et al. m(6)A modification confers thermal vulnerability to HPV E7 oncotranscripts via reverse regulation of its reader protein IGF2BP1 upon heat stress. Cell Rep. 2022;41(4):111546. doi:10.1016/j.celrep.2022.111546
    • 130. Wang J, Chen L, Qiang P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 2021;21(1):99. doi:10.1186/s12935-021-01799-x • This research reports a novel regulatory mechanism: heat treatment can suppress the oncogenic potential of HPV-positive cervical cancer cells by degrading the E7-IGF2BP1 complex.
    • 131. Hu C, Liu T, Han C et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m(6)A-MYC expression. Int. J. Biol. Sci. 2022;18(2):507–521. doi:10.7150/ijbs.67770 •• Reports that HPV E6/E7 can promote the progression of cervical cancer by facilitating glycolysis through the IGF2BP2/A-MYC pathway. The study integrates the high-risk factor HPV with metabolism and epigenetics to explore the mechanisms in cervical cancer, presenting a research approach worthy of emulation.
    • 132. Ji F, Lu Y, Chen S et al. IGF2BP2-modified circular RNA circARHGAP12 promotes cervical cancer progression by interacting m(6)A/FOXM1 manner. Cell Death Discov. 2021;7(1):215. doi:10.1038/s41420-021-00595-w
    • 133. Liu X, Chen J, Chen W et al. Targeting IGF2BP3 in Cancer. Int.J. Mol. Sci. 2023;24(11):9423. doi:10.3390/ijms24119423
    • 134. Zhang Y, Wang D, Wu D et al. Long noncoding RNA KCNMB2-AS1 stabilized by N(6)-methyladenosine modification promotes cervical cancer growth through acting as a competing endogenous RNA. Cell Transplant. 2020;29:963689720964382. doi:10.1177/0963689720964382
    • 135. Zhang W, Xiao P, Tang J et al. m6A regulator-mediated tumour infiltration and methylation modification in cervical cancer microenvironment. Front. Immunol. 2022;13:888650. doi:10.3389/fimmu.2022.888650
    • 136. Chen D, Guo W, Yu H et al. Construction and validation of prognostic prediction established on N6-methyladenosine related genes in cervical squamous cell carcinoma. Transl Cancer Res. 2022;11(9):3064–3079. doi:10.21037/tcr-22-881
    • 137. Ji H, Zhang JA, Liu H et al. Comprehensive characterization of tumor microenvironment and m6A RNA methylation regulators and its effects on PD-L1 and immune infiltrates in cervical cancer. Front. Immunol. 2022;13:976107. doi:10.3389/fimmu.2022.976107
    • 138. Guo Y, Bai Y, Wang L et al. The significance of m6A RNA methylation modification in prognosis and tumor microenvironment immune infiltration of cervical cancer. Medicine (Baltimore) 2022;101(26):e29818. doi:10.1097/MD.0000000000029818
    • 139. Wang S, Ding B, Wang S et al. Gene signature of m(6)A RNA regulators in diagnosis, prognosis, treatment, and immune microenvironment for cervical cancer. Sci Rep. 2022;12(1):17667. doi:10.1038/s41598-022-22211-2
    • 140. Zhang H, Kong W, Zhao X et al. N6-Methyladenosine-Related lncRNAs as potential biomarkers for predicting prognoses and immune responses in patients with cervical cancer. BMC Genom Data. 2022;23(1):8. doi:10.1186/s12863-022-01024-2
    • 141. Jia H, Hao S, Cao M et al. m(6)A-Related lncRNAs Are Potential Prognostic Biomarkers of Cervical Cancer and Affect Immune Infiltration. Dis. Markers 2022;2022:8700372. doi:10.1155/2022/8700372
    • 142. Jia H, Cao M, Hao S et al. Prediction of prognosis, immune infiltration and immunotherapy response with N6-methyladenosine-related lncRNA clustering patterns in cervical cancer. Sci Rep. 2022;12(1):17256. doi:10.1038/s41598-022-20162-2
    • 143. Liu X, Zhang W, Wan J et al. Landscape and Construction of a Novel N6-methyladenosine-related LncRNAs in Cervical Cancer. Reprod Sci. 2023;30(3):903–913. doi:10.1007/s43032-022-01074-y
    • 144. Gu R, Liu M, Lin P et al. Correlation analysis of Poor Prognosis and Immunotherapy of lncRNAs Related with m (6)A Modification in Cervical Cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 2022;53(4):626–636. doi:10.12182/20220760504. Chinese.
    • 145. Shi YL, Liu MB, Wu HT et al. GLTP Is a Potential Prognostic Biomarker and Correlates with Immunotherapy Efficacy in Cervical Cancer. Dis. Markers 2022;2022:9109365. doi:10.1155/2022/9109365
    • 146. Lin Z, Zou J, Sui X et al. Necroptosis-related lncRNA signature predicts prognosis and immune response for cervical squamous cell carcinoma and endocervical adenocarcinomas. Sci Rep. 2022;12(1):16285. doi:10.1038/s41598-022-20858-5
    • 147. Zou J, Lin Z, Jiao W et al. A multi-omics-based investigation of the prognostic and immunological impact of necroptosis-related mRNA in patients with cervical squamous carcinoma and adenocarcinoma. Sci Rep. 2022;12(1):16773. doi:10.1038/s41598-022-20566-0
    • 148. Chen Z, Ling K, Zhu Y et al. circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem. Biophys. Res. Commun. 2021;551:114–120. doi:10.1016/j.bbrc.2021.03.020
    • 149. Liu L, Li L, Zu W et al. PIWI-interacting RNA-17458 is oncogenic and a potential therapeutic target in cervical cancer. J Cancer. 2023;14(9):1648–1659. doi:10.7150/jca.83446
    • 150. Wang Y, Mao Y, Wang C et al. RNA methylation-related genes of m6A, m5C, and m1A predict prognosis and immunotherapy response in cervical cancer. Ann. Med. 2023;55(1):2190618. doi:10.1080/07853890.2023.2190618
    • 151. Meng Q, Schatten H, Zhou Q et al. Crosstalk between m6A and coding/noncoding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY). 2023;15(13):6577–6619. doi:10.18632/aging.204836
    • 152. Wang Y, Jia G. Detection methods of epitranscriptomic mark N6-methyladenosine. Essays Biochem. 2020;64(6):967–979. doi:10.1042/EBC20200039
    • 153. Liu XM, Zhou J, Mao Y et al. Programmable RNA N(6)-methyladenosine editing by CRISPR-Cas9 conjugates. Nat Chem Biol. 2019;15(9):865–871. doi:10.1038/s41589-019-0327-1 • The study employed CRISPR-Cas9 for m6A editing, enabling site-specific demethylation. This technology can be utilized in future studies of m6A modification.
    • 154. Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020;19(1):44. doi:10.1186/s12943-020-01172-y
    • 155. Li X, Ma S, Deng Y et al. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022;21(1):76. doi:10.1186/s12943-022-01558-0
    • 156. Rauch S, He C, Dickinson BC. Targeted m(6)A reader proteins to study epitranscriptomic regulation of single RNAs. J. Am. Chem. Soc. 2018;140(38):11974–11981. doi:10.1021/jacs.8b05012
    • 157. Selberg S, Blokhina D, Aatonen M et al. Discovery of small molecules that activate rna methylation through cooperative binding to the METTL3-14-WTAP complex active site. Cell Rep. 2019;26(13):3762–3771.e5. doi:10.1016/j.celrep.2019.02.100
    • 158. Bedi RK, Huang D, Eberle SA et al. Small-Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. ChemMedChem. 2020;15(9):744–748. doi:10.1002/cmdc.202000011
    • 159. Yankova E, Blackaby W, Albertella M et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021;593(7860):597–601. doi:10.1038/s41586-021-03536-w
    • 160. Huang Y, Su R, Sheng Y et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35(4):677–691.e10. doi:10.1016/j.ccell.2019.03.006
    • 161. Zhang Y, Li QN, Zhou K et al. Identification of specific N(6)-methyladenosine RNA demethylase FTO inhibitors by single-quantum-dot-based FRET nanosensors. Anal. Chem. 2020;92(20):13936–13944. doi:10.1021/acs.analchem.0c02828
    • 162. Peng S, Xiao W, Ju D et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci. Transl. Med. 2019;11(488). doi:10.1126/scitranslmed.aau7116
    • 163. Selberg S, Seli N, Kankuri E et al. Rational design of novel anticancer small-molecule RNA m6A Demethylase ALKBH5 inhibitors. ACS Omega 2021;6(20):13310–13320. doi:10.1021/acsomega.1c01289 •• The research introduces a high-throughput screening method for ALKBH5 inhibitors, employing computer modeling to select target compounds from thousands of compounds. This provides an efficient approach for screening m6A regulatory agonists/inhibitors, which may be applicable for future scientific research.
    • 164. Li N, Kang Y, Wang L et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc. Natl Acad. Sci. USA 2020;117(33):20159–20170. doi:10.1073/pnas.1918986117
    • 165. Yu H, Yang X, Tang J et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2alpha-mediated glycolysis. Mol. Ther. Nucleic Acids. 2021;23:27–41. doi:10.1016/j.omtn.2020.10.031
    • 166. Chen H, Xiang Y, Yin Y et al. The m6A methyltransferase METTL3 regulates autophagy and sensitivity to cisplatin by targeting ATG5 in seminoma. Transl. Androl. Urol. 2021;10(4):1711–1722. doi:10.21037/tau-20-1411
    • 167. Xiao P, Liu YK, Han W et al. Exosomal delivery of FTO confers gefitinib resistance to recipient cells through ABCC10 Regulation in an m6A-dependent manner. Mol. Cancer Res. 2021;19(4):726–738. doi:10.1158/1541-7786.MCR-20-0541
    • 168. DiNardo CD, Jonas BA, Pullarkat V et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020;383(7):617–629. doi:10.1056/NEJMoa2012971