We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

Epigenetics and suicide: investigating altered H3K14ac unveiled differential expression in ADORA2A, B4GALT2 and MMP14

    Iris Šalamon Arčan

    Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

    ,
    Katarina Kouter

    Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

    Institute of Microbiology & Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

    ,
    Tomaž Zupanc

    Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

    &
    Alja Videtič Paska

    *Author for correspondence:

    E-mail Address: alja.videtic@mf.uni-lj.si

    Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

    Published Online:https://doi.org/10.2217/epi-2023-0351

    Background: Environmental factors make an important contribution to suicide. Histone tails are prone to different modifications, leading to changes of chromatin (de)condensation and consequently gene expression. Materials & methods: Level of H3K14ac was studied with chromatin immunoprecipitation followed by high-throughput DNA sequencing. Genes were further validated with RT-qPCR; using hippocampal tissue. Results: We showed lowered H3K14ac levels in individuals who died by suicide. The genes ADORA2A, B4GALT2 and MMP14 showed differential expression in individuals who died by suicide. Identified genetic and protein interactions among genes show interactions with suicide-related genes. Conclusion: Further investigations of histone modifications in association with DNA methylation and miRNA are needed to expand our knowledge of the genes that could significantly contribute to suicide.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. WHO. Suicide. https://www.who.int/news-room/fact-sheets/detail/suicide (18.1.).
    • 2. WHO. Suicide worldwide in 2019: global health estimates (2021). https://www.who.int/publications/i/item/9789240026643
    • 3. NIJZ. Svetovni dan preprečevanja samomora (2023). https://nijz.si/mediji/svetovni-dan-preprecevanja-samomora-2023/
    • 4. Varnik A, Kolves K, Van Der Feltz-Cornelis CM et al. Suicide methods in Europe: a gender-specific analysis of countries participating in the “European Alliance Against Depression”. J. Epidemiol. Community Health 62(6), 545–551 (2008).
    • 5. Mirza S, Docherty AR, Bakian A et al. Genetics and epigenetics of self-injurious thoughts and behaviors: systematic review of the suicide literature and methodological considerations. Am. J. Med. Genet B Neuropsychiatr. Genet 189(7–8), 221–246 (2022).
    • 6. Edwards AC, Ohlsson H, Moscicki E et al. On the genetic and environmental relationship between suicide attempt and death by suicide. Am. J. Psychiatry 178(11), 1060–1069 (2021).
    • 7. Cheung S, Woo J, Maes MS, Zai CC. Suicide epigenetics, a review of recent progress. J. Affect. Disord. 265, 423–438 (2020).
    • 8. Mann J, Rizk M. A brain-centric model of suicidal behavior. Am. J. Psychiatry 177(10), 902–916 (2020).
    • 9. Turecki G, Brent DA, Gunnell D et al. Suicide and suicide risk. Nat. Rev. Dis. Primers 5(1), 74 (2019).
    • 10. Bradvik L. Suicide risk and mental disorders. Int. J. Environ. Res. Public Health 15(9), 2028 (2018).
    • 11. Zhang J, Li Z. The association between depression and suicide when hopelessness is controlled for. Compr. Psychiatry 54(7), 790–796 (2013).
    • 12. Ramos-Rosales DF, Vazquez-Alaniz F, Urtiz-Estrada N et al. Epigenetic marks in suicide: a review. Psychiatr. Genet. 31(5), 145–161 (2021). • Great review article explaining about epigenetic marks in suicide.
    • 13. Nestler EJ, Pena CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neuroscientist 22(5), 447–463 (2016).
    • 14. Turecki G. Epigenetics and suicidal behavior research pathways. Am. J. Prev. Med. 47(2 Suppl. 3), S144–S151 (2014).
    • 15. Labonte B, Turecki G. The epigenetics of suicide: explaining the biological effects of early life environmental adversity. Arch. Suicide Res. 14(4), 291–310 (2010).
    • 16. Vaiserman AM, Koliada AK. Early-life adversity and long-term neurobehavioral outcomes: epigenome as a bridge? Hum. Genom. 11(1), 34 (2017).
    • 17. Mahgoub M, Monteggia LM. Epigenetics and psychiatry. Neurotherapeutics 10(4), 734–741 (2013).
    • 18. Roy B, Dwivedi Y. Understanding epigenetic architecture of suicide neurobiology: a critical perspective. Neurosci. Biobehav. Rev. 72, 10–27 (2017).
    • 19. Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox. Res. 27(2), 172–197 (2015).
    • 20. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L. H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genom. 13(424), 1–18 (2012).
    • 21. Peña CJ, Nestler EJ. Progress in epigenetics of depression. Prog. Mol. Biol. Transl. Sci. 157, 41–66 (2018).
    • 22. Narayan PJ, Lill C, Faull R, Curtis MA, Dragunow M. Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol. Dis. 74, 281–294 (2015).
    • 23. Jarmasz JS, Stirton H, Davie JR, Del Bigio MR. DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clin. Epigenetics 11(1), 5 (2019). • Epigenetic mark, histone post-tranaslational modification is studied for its stability.
    • 24. Nagy C, Maheu M, Lopez JP et al. Effects of postmortem interval on biomolecule integrity in the brain. J. Neuropathol. Experim. Neurol. 74(5), 459–469 (2015).
    • 25. Ernst C, Chen ES, Turecki G. Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. Mol. Psychiatry 14(9), 830–832 (2009).
    • 26. Fiori LM, Gross JA, Turecki G. Effects of histone modifications on increased expression of polyamine biosynthetic genes in suicide. Int. J. Neuropsychopharmacol. 15(8), 1161–1166 (2012).
    • 27. Fiori LM, Turecki G. Genetic and epigenetic influences on expression of spermine synthase and spermine oxidase in suicide completers. Int. J. Neuropsychopharmacol. 13(6), 725–736 (2010).
    • 28. Fiori LM, Turecki G. Epigenetic regulation of spermidine/spermine N1-acetyltransferase (SAT1) in suicide. J. Psychiatr. Res. 45(9), 1229–1235 (2011).
    • 29. Nagy C, Torres-Platas SG, Mechawar N, Turecki G. Repression of astrocytic connexins in cortical and subcortical brain regions and prefrontal enrichment of H3K9me3 in depression and suicide. Int. J. Neuropsychopharmacol. 20(1), 50–57 (2017).
    • 30. Misztak P, Panczyszyn-Trzewik P, Nowak G, Sowa-Kucma M. Epigenetic marks and their relationship with BDNF in the brain of suicide victims. PLOS ONE 15(9), e0239335 (2020). • H3K14ac modification tested on hippocampus of suicide with western blot.
    • 31. Lutz PE, Chay MA, Pacis A et al. Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregulation. Nat. Commun. 12(1), 1132 (2021).
    • 32. Covington HE 3rd, Maze I, Laplant QC et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29(37), 11451–11460 (2009). • Article described that administration of HDAC inhibitors reverted H3K14ac level and depressed state.
    • 33. Covington HE 3rd, Vialou VF, Laplant Q, Ohnishi YN, Nestler EJ. Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neurosci. Lett. 493(3), 122–126 (2011).
    • 34. Kouter K, Zupanc T, Videtic Paska A. Genome-wide DNA methylation in suicide victims revealing impact on gene expression. J. Affect. Disord. 253, 419–425 (2019).
    • 35. Ropret S, Kouter K, Zupanc T, Videtic Paska A. BDNF methylation and mRNA expression in brain and blood of completed suicides in Slovenia. World J. Psychiatry 11(12), 1301–1313 (2021).
    • 36. Kouter K, Zupanc T, Videtic Paska A. Targeted sequencing approach: comprehensive analysis of DNA methylation and gene expression across blood and brain regions in suicide victims. World J. Biol. Psychiatry 24(1), 12–23 (2023).
    • 37. Šalamon Arčan I, Kouter K, Videtič Paska A. Depressive disorder and antidepressants from an epigenetic point of view. World J. Psychiatry 12(9), 1150–1168 (2022).
    • 38. Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 182 (2014).
    • 39. Babraham Bioinformatics. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
    • 40. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–1760 (2009).
    • 41. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18(11), 1851–1858 (2008).
    • 42. Zhang Y, Liu T, Meyer CA et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9), R137 (2008).
    • 43. Salmon-Divon M, Dvinge H, Tammoja K, Bertone P. PeakAnalyzer: genome-wide annotation of chromatin binding and modification loci. BMC Bioinform. 11, 415 (2010).
    • 44. Stark R, Brown G. DiffBind: differential binding analysis of ChIP-Seq peak data. https://bioconductor.org/packages/release/bioc/html/DiffBind.html
    • 45. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14(2), 178–192 (2013).
    • 46. Bustin SA, Benes V, Garson JA et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55(4), 611–622 (2009).
    • 47. Vandesompele J, De Preter K, Pattyn F et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Gen. Biol. 3(7), research0034.1 (2002).
    • 48. Motulsky HJ, Brown RE. Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform. 7, 123 (2006).
    • 49. Warde-Farley D, Donaldson SL, Comes O et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38(Web Server issue), W214–W220 (2010).
    • 50. Fang G, Wang W, Paunic V et al. Discovering genetic interactions bridging pathways in genome-wide association studies. Nat. Commun. 10(1), 4274 (2019).
    • 51. Sokolowski M, Wasserman J, Wasserman D. Gene-level associations in suicide attempter families show overrepresentation of synaptic genes and genes differentially expressed in brain development. Am. J. Med. Genet B Neuropsychiatr. Genet 177(8), 774–784 (2018).
    • 52. Kohli MA, Salyakina D, Pfennig A et al. Association of genetic variants in the neurotrophic receptor-encoding gene NTRK2 and a lifetime history of suicide attempts in depressed patients. Arch. Gen. Psychiatry 67(4), 348–359 (2010).
    • 53. Docherty AR, Mullins N, Ashley-Koch AE et al. GWAS meta-analysis of suicide attempt: identification of 12 genome-wide significant loci and implication of genetic risks for specific health factors. Am. J. Psychiatry 180(10), 723–738 (2023).
    • 54. Dóra F, Renner E, Keller D, Palkovits M, Dobolyi A. Transcriptome profiling of the dorsomedial prefrontal cortex in suicide victims. Int. J. Mol. Sci. 23(13), 1–30 (2022).
    • 55. Monsalve EM, Garcia-Gutierrez MS, Navarrete F, Giner S, Laborda J, Manzanares J. Abnormal expression pattern of Notch receptors, ligands, and downstream effectors in the dorsolateral prefrontal cortex and amygdala of suicidal victims. Mol. Neurobiol. 49(2), 957–965 (2014).
    • 56. Arias B, Fabbri C, Serretti A et al. DISC1-TSNAX and DAOA genes in major depression and citalopram efficacy. J. Affect. Disord. 168, 91–97 (2014).
    • 57. Pandey GN, Rizavi HS, Bhaumik R, Zhang H. Chemokines gene expression in the prefrontal cortex of depressed suicide victims and normal control subjects. Brain Behav. Immun. 94, 266–273 (2021).
    • 58. Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem. Int. 38(2), 107–125 (2001).
    • 59. Pasquini S, Contri C, Merighi S et al. Adenosine receptors in neuropsychiatric disorders: fine regulators of neurotransmission and potential therapeutic targets. Int. J. Mol. Sci. 23(3) (2022).
    • 60. Leem YH, Jang JH, Park JS, Kim HS. Exercise exerts an anxiolytic effect against repeated restraint stress through 5-HT(2A)-mediated suppression of the adenosine A(2A) receptor in the basolateral amygdala. Psychoneuroendocrinology 108, 182–189 (2019).
    • 61. Di Palma M, Sartini S, Lattanzi D et al. Evidence for the existence of A2AR-TrkB heteroreceptor complexes in the dorsal hippocampus of the rat brain: potential implications of A2AR and TrkB interplay upon ageing. Mech. Ageing Dev. 190, 111289 (2020).
    • 62. Coelho JE, Alves P, Canas PM et al. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion, and anxiety. Front. Psychiatry 5, 67 (2014).
    • 63. Crema LM, Pettenuzzo LF, Schlabitz M et al. The effect of unpredictable chronic mild stress on depressive-like behavior and on hippocampal A1 and striatal A2A adenosine receptors. Physiol. Behav. 109, 1–7 (2013). • Research investigating A2A receptor in the depressive state.
    • 64. Kaster MP, Machado NJ, Silva HB et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc. Natl Acad. Sci. USA 112(25), 7833–7838 (2015).
    • 65. Bartoli F, Clerici M, Carra G. Purinergic system and suicidal behavior: exploring the link between adenosine A2A receptors and depressive/impulsive features. Mol. Psychiatry 25(3), 512–513 (2020). • In this research, association between impulsivity and A2A receptor was shown.
    • 66. Oliveira S, Ardais AP, Bastos CR et al. Impact of genetic variations in ADORA2A gene on depression and symptoms: a cross-sectional population-based study. Purinergic Signal 15(1), 37–44 (2019).
    • 67. Kerman IA, Bernard R, Bunney WE et al. Evidence for transcriptional factor dysregulation in the dorsal raphe nucleus of patients with major depressive disorder. Front. Neurosci. 6, 135 (2012).
    • 68. Nuzziello N, Craig F, Simone M et al. Integrated analysis of microRNA and mRNA expression profiles: an attempt to disentangle the complex interaction network in attention deficit hyperactivity disorder. Brain Sci. 9(10), 288 (2019).
    • 69. Beroun A, Mitra S, Michaluk P, Pijet B, Stefaniuk M, Kaczmarek L. MMPs in learning and memory and neuropsychiatric disorders. Cell. Mol. Life Sci. 76(16), 3207–3228 (2019).
    • 70. Dwivedi Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsych. Dis. Treatment 5, 433–449 (2009).
    • 71. Wang Y, Yuan Q, Xie L. Histone modifications in aging: the underlying mechanisms and implications. Curr. Stem Cell Res. Ther. 13(2), 125–135 (2018).
    • 72. Pal S, Tyler JK. Epigenetics and aging. Sci. Advan. 2(7), e1600584 (2016).