We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Published Online:https://doi.org/10.2217/epi-2023-0045

Despite recent advances, prostate cancer (PCa) remains a leading cause of cancer morbidity and mortality. Clinically, PCa screening methods display low sensitivity and specificity, leading to suboptimal patient care. Recent research suggests that PCa progression is regulated by a coordinated spectrum of epigenetic alterations that notably involves noncoding RNAs. These molecular aberrations drive PCa progression by inducing gene expression programs that promote metastatic dissemination. Epigenetic proteins and noncoding RNAs can be detected noninvasively in body fluids, allowing improved PCa screening and prognosis. In addition, epigenetic alterations can be targeted pharmacologically, providing unprecedented therapeutic opportunities. This work reviews the current literature linking epigenetic dysregulation and PCa progression and proposes a framework for integrating epigenetic strategies into the clinical management of PCa.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1. Sung H, Ferlay J et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
  • 2. U.S.P.S.T. Force, Grossman DC, Curry SJ, Owens DK et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA 319, 1901–1913 (2018). • This article provides recommendations with regards to prostate cancer (PCa) screening.
  • 3. Van Poppel H, Albreht T, Basu P, Hogenhout R, Collen S, Roobol M. Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future. Nat. Rev. Urol. 19, 562–572 (2022).
  • 4. Zhang K, Bangma CH, Roobol MJ. Prostate cancer screening in Europe and Asia. Asian J. Urol. 4, 86–95 (2017).
  • 5. Heijnsdijk EAM, Gulati R, Tsodikov A et al. Lifetime benefits and harms of prostate-specific antigen-based risk-stratified screening for prostate cancer. J. Natl Cancer Inst. 112, 1013–1020 (2020).
  • 6. Chang SL, Harshman LC, Presti JC Jr. Impact of common medications on serum total prostate-specific antigen levels: analysis of the National Health and Nutrition Examination Survey. J. Clin. Oncol. 28, 3951–3957 (2010).
  • 7. Ilic D, Djulbegovic M, Jung JH et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. BMJ 362, k3519 (2018).
  • 8. Loeb S, Vellekoop A, Ahmed HU et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).
  • 9. Borley N, Feneley MR. Prostate cancer: diagnosis and staging. Asian J. Androl. 11, 74–80 (2009).
  • 10. Cristea O, Lavallee LT, Montroy J et al. Active surveillance in Canadian men with low-grade prostate cancer. CMAJ 188, E141–E147 (2016).
  • 11. Hamdy FC, Donovan JL, Lane JA et al. 10-Year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).
  • 12. Potosky AL, Davis WW, Hoffman RM et al. Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J. Natl Cancer Inst. 96, 1358–1367 (2004).
  • 13. Banerjee R, Smith J, Eccles MR, Weeks RJ, Chatterjee A. Epigenetic basis and targeting of cancer metastasis. Trends Cancer 8, 226–241 (2022).
  • 14. Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J. Biomed. Sci. 28, 27 (2021).
  • 15. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).
  • 16. Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021).
  • 17. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 330, 612–616 (2010).
  • 18. Zhang P, Torres K, Liu X, Liu CG, Pollock RE. An overview of chromatin-regulating proteins in cells. Curr. Protein Pept. Sci. 17, 401–410 (2016).
  • 19. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).
  • 20. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).
  • 21. Biswas S, Rao CM. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 837, 8–24 (2018).
  • 22. Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).
  • 23. Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83, 344–353 (2005).
  • 24. Richard Boland C. Non-coding RNA: it's not junk. Dig. Dis. Sci. 62, 1107–1109 (2017).
  • 25. Crea F, Clermont PL, Parolia A, Wang Y, Helgason CD. The non-coding transcriptome as a dynamic regulator of cancer metastasis. Cancer Metastasis Rev. 33, 1–16 (2014).
  • 26. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).
  • 27. Qian Y, Shi L, Luo Z. Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front. Med. (Lausanne) 7, 612393 (2020).
  • 28. Chen J, Wang Y, Wang C, Hu JF, Li W. LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front. Genet. 11, 277 (2020).
  • 29. Mirzaei S, Gholami MH, Hushmandi K et al. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J. Hematol. Oncol. 15, 18 (2022).
  • 30. John RM, Rougeulle C. Developmental epigenetics: phenotype and the flexible epigenome. Front. Cell Dev. Biol. 6, 130 (2018).
  • 31. Liu Y, Liu B, Jin G et al. An integrated three-long non-coding RNA signature predicts prognosis in colorectal cancer patients. Front. Oncol. 9, 1269 (2019).
  • 32. Grillone K, Riillo C, Scionti F et al. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J. Exp. Clin. Cancer Res. 39, 117 (2020).
  • 33. Baca SC, Garraway LA. The genomic landscape of prostate cancer. Front. Endocrinol. (Lausanne) 3, 69 (2012).
  • 34. Lopez J, Anazco-Guenkova AM, Monteagudo-Garcia O, Blanco S. Epigenetic and epitranscriptomic control in prostate cancer. Genes (Basel) 13, (2022).
  • 35. Barbieri CE, Baca SC, Lawrence MS et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. 44, 685–689 (2012).
  • 36. Lin D, Wyatt AW, Xue H et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).
  • 37. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).
  • 38. Massie CE, Mills IG, Lynch AG. The importance of DNA methylation in prostate cancer development. J. Steroid Biochem. Mol. Biol. 166, 1–15 (2017).
  • 39. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ. Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene 18, 1313–1324 (1999).
  • 40. Graca I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jeronimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin. Epigenetics 8, 98 (2016).
  • 41. Chinaranagari S, Sharma P, Bowen NJ, Chaudhary J. Prostate cancer epigenome. Methods Mol. Biol. 1238, 125–140 (2015).
  • 42. Cang S, Feng J, Konno S et al. Deficient histone acetylation and excessive deacetylase activity as epigenomic marks of prostate cancer cells. Int. J. Oncol. 35, 1417–1422 (2009).
  • 43. Li G, Tian Y, Zhu WG. The roles of histone deacetylases and their inhibitors in cancer therapy. Front. Cell Dev. Biol. 8, 576946 (2020).
  • 44. Suraweera A, O'Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol. 8, 92 (2018).
  • 45. Hontecillas-Prieto L, Flores-Campos R, Silver A, de Alava E, Hajji N, Garcia-Dominguez DJ. Synergistic enhancement of cancer therapy using HDAC inhibitors: opportunity for clinical trials. Front. Genet. 11, 578011 (2020).
  • 46. Biersack B, Nitzsche B, Hopfner M. HDAC inhibitors with potential to overcome drug resistance in castration-resistant prostate cancer. Cancer Drug Resist. 5, 64–79 (2022).
  • 47. Kaushik D, Vashistha V, Isharwal S, Sediqe SA, Lin MF. Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials. Ther. Adv. Urol. 7, 388–395 (2015).
  • 48. Varambally S, Dhanasekaran SM, Zhou M et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).
  • 49. Clermont PL, Crea F, Chiang YT et al. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clin. Epigenetics 8, 16 (2016). • This article identifies CBX2 as a potential biomarker and therapeutic target in PCa.
  • 50. Blackledge NP, Klose RJ. The molecular principles of gene regulation by polycomb repressive complexes. Nat. Rev. Mol. Cell Biol. 22, 815–833 (2021).
  • 51. Guo Y, Zhao S, Wang GG. Polycomb gene silencing mechanisms: PRC2 chromatin targeting, H3K27me3 ‘readout’, and phase separation-based compaction. Trends Genet. 37, 547–565 (2021).
  • 52. Yu J, Yu J, Rhodes DR et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res. 67, 10657–10663 (2007). •• This article highlights the potential of EZH2 genomic targets as biomarkers in PCa.
  • 53. Ngollo M, Lebert A, Daures M et al. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer 17, 261 (2017).
  • 54. Das P, Taube JH. Regulating methylation at H3K27: a trick or treat for cancer cell plasticity. Cancers (Basel) 12, (2020).
  • 55. Kraft K, Yost KE, Murphy SE et al. Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. Proc. Natl Acad. Sci. USA 119, e2201883119 (2022).
  • 56. Mu W, Starmer J, Yee D, Magnuson T. EZH2 variants differentially regulate polycomb repressive complex 2 in histone methylation and cell differentiation. Epigenetics Chromatin 11, 71 (2018).
  • 57. Kawaguchi T, Machida S, Kurumizaka H, Tagami H, Nakayama JI. Phosphorylation of CBX2 controls its nucleosome-binding specificity. J. Biochem. 162, 343–355 (2017).
  • 58. Sellers WR, Loda M. The EZH2 polycomb transcriptional repressor–a marker or mover of metastatic prostate cancer? Cancer Cell 2, 349–350 (2002).
  • 59. Clermont PL, Lin D, Crea F et al. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin. Epigenetics 7, 40 (2015).
  • 60. Bai Y, Zhang Z, Cheng L et al. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J. Biol. Chem. 294, 9911–9923 (2019). •• This study highlights the therapeutic potential of EZH2 as a drug target in advanced PCa.
  • 61. Yang YA, Yu J. EZH2, an epigenetic driver of prostate cancer. Protein Cell 4, 331–341 (2013).
  • 62. Kang N, Eccleston M, Clermont PL et al. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics 12, 1457–1476 (2020).
  • 63. Clermont PL, Sun L, Crea F et al. Genotranscriptomic meta-analysis of the polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role. Br. J. Cancer 111, 1663–1672 (2014).
  • 64. Wang S, Alpsoy A, Sood S et al. Selective CBX2 chromodomain ligand and its cellular activity during prostate cancer neuroendocrine differentiation. Chembiochem 22, 2335–2344 (2021).
  • 65. Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl. Androl. Urol. 10, 3104–3116 (2021).
  • 66. Ci X, Hao J, Dong X et al. Heterochromatin protein 1alpha mediates development and aggressiveness of neuroendocrine prostate cancer. Cancer Res. 78, 2691–2704 (2018).
  • 67. Crea F, Sun L, Mai A et al. The emerging role of histone lysine demethylases in prostate cancer. Mol. Cancer 11, 52 (2012).
  • 68. Parolia A, Cieslik M, Chu SC et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature 571, 413–418 (2019).
  • 69. Asangani IA, Dommeti VL, Wang X et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014). • This article details the targeting of the epigenetic regulator BRD4.
  • 70. Wang Y, Yu J. Dissecting multiple roles of SUMOylation in prostate cancer. Cancer Lett. 521, 88–97 (2021).
  • 71. Mahajan K, Malla P, Lawrence HR et al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer. Cancer Cell 31, 790–803 e8 (2017).
  • 72. Nag N, Dutta S. Deubiquitination in prostate cancer progression: role of USP22. J. Cancer Metastasis Treat. 6, (2020).
  • 73. Izzo LT, Affronti HC, Wellen KE. The bidirectional relationship between cancer epigenetics and metabolism. Ann. Rev. Cancer Biol. 5, 235–257 (2021).
  • 74. Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-coding RNAs as mediators of epigenetic changes in malignancies. Cancers (Basel) 12, (2020).
  • 75. Yang X, Liu M, Li M et al. Epigenetic modulations of noncoding RNA: a novel dimension of cancer biology. Mol. Cancer 19, 64 (2020).
  • 76. Lemos AEG, Matos ADR, Ferreira LB, Gimba ERP. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 10, 6589–6603 (2019).
  • 77. Pepe P, Aragona F. PCA3 score vs PSA free/total accuracy in prostate cancer diagnosis at repeat saturation biopsy. Anticancer Res. 31, 4445–4449 (2011). •• This article directly compares prostate-specific antigen and PCA3.
  • 78. Rendon RA, Mason RJ, Marzouk K et al. Recommandations de l'Association des urologues du Canada sur le depistage et le diagnostic precoce du cancer de la prostate. Can. Urol. Assoc. J. 11, 298–309 (2017).
  • 79. Prensner JR, Iyer MK, Sahu A et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45, 1392–1398 (2013).
  • 80. Mehra R, Udager AM, Ahearn TU et al. Overexpression of the long non-coding RNA SChLAP1 independently predicts lethal prostate cancer. Eur. Urol. 70, 549–552 (2016).
  • 81. Chang J, Xu W, Du X, Hou J. MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. Onco Targets Ther. 11, 3461–3473 (2018).
  • 82. Jiang G, Su Z, Liang X, Huang Y, Lan Z, Jiang X. Long non-coding RNAs in prostate tumorigenesis and therapy. Mol. Clin. Oncol. 13, 76 (2020).
  • 83. Parolia A, Crea F, Xue H et al. The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Mol. Cancer 14, 46 (2015).
  • 84. Parolia A, Venalainen E, Xue H et al. The long noncoding RNA HORAS5 mediates castration-resistant prostate cancer survival by activating the androgen receptor transcriptional program. Mol. Oncol. 13, 1121–1136 (2019).
  • 85. Crea F, Watahiki A, Quagliata L et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 5, 764–774 (2014).
  • 86. Crea F, Venalainen E, Ci X et al. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics 8, 721–731 (2016).
  • 87. Mather RL, Parolia A, Carson SE et al. The evolutionarily conserved long non-coding RNA LINC00261 drives neuroendocrine prostate cancer proliferation and metastasis via distinct nuclear and cytoplasmic mechanisms. Mol. Oncol. 15, 1921–1941 (2021).
  • 88. Pucci P, Venalainen E, Alborelli I et al. LncRNA HORAS5 promotes taxane resistance in castration-resistant prostate cancer via a BCL2A1-dependent mechanism. Epigenomics 12, 1123–1138 (2020).
  • 89. Misawa A, Takayama KI, Inoue S. Long non-coding RNAs and prostate cancer. Cancer Sci. 108, 2107–2114 (2017).
  • 90. Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).
  • 91. Abramovic I, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D, Sincic N. miRNA in prostate cancer: challenges toward translation. Epigenomics 12, 543–558 (2020).
  • 92. Crea F, Quagliata L, Michael A et al. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol. Oncol. 10, 693–703 (2016).
  • 93. Martens-Uzunova ES, Hoogstrate Y, Kalsbeek A et al. C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget 6, 17430–17444 (2015).
  • 94. Greene J, Baird AM, Casey O et al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep. 9, 10739 (2019).
  • 95. Ronnau CG, Verhaegh GW, Luna-Velez MV, Schalken JA. Noncoding RNAs as novel biomarkers in prostate cancer. Biomed. Res. Int. 2014, 591703 (2014).
  • 96. Bell N, Connor Gorber S, Shane A et al. Canadian Task Force on Preventive Health Care. Recommendations on screening for prostate cancer with the prostate-specific antigen test. CMAJ 186, 1225–1234 (2014).
  • 97. Valdes-Mora F, Clark SJ. Prostate cancer epigenetic biomarkers: next-generation technologies. Oncogene 34, 1609–1618 (2015).
  • 98. Durand X, Moutereau S, Xylinas E, de la Taille A. Progensa PCA3 test for prostate cancer. Expert Rev. Mol. Diagn. 11, 137–144 (2011).
  • 99. Malavaud B, Cussenot O, Mottet N et al. Impact of adoption of a decision algorithm including PCA3 for repeat biopsy on the costs for prostate cancer diagnosis in France. J. Med. Econ. 16, 358–363 (2013).
  • 100. D'Adamo GL, Widdop JT, Giles EM. The future is now? Clinical and translational aspects of “omics” technologies. Immunol. Cell Biol. 99, 168–176 (2021).
  • 101. Helsmoortel H, Everaert C, Lumen N, Ost P, Vandesompele J. Detecting long non-coding RNA biomarkers in prostate cancer liquid biopsies: hype or hope? Noncoding RNA Res. 3, 64–74 (2018).
  • 102. Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel) 11, (2019).
  • 103. Santos V, Freitas C, Fernandes MG et al. Liquid biopsy: the value of different bodily fluids. Biomark. Med. 16, 127–145 (2022).
  • 104. Hu C, Dignam JJ. Biomarker-driven oncology clinical trials: key design elements, types, features, and practical considerations. JCO Precis. Oncol. 3, (2019).
  • 105. Hutchinson R, Lotan Y. Cost consideration in utilization of multiparametric magnetic resonance imaging in prostate cancer. Transl. Androl. Urol. 6, 345–354 (2017).
  • 106. Schneider JE, Sidhu MK, Doucet C, Kiss N, Ohsfeldt RL, Chalfin D. Economics of cancer biomarkers. Per. Med. 9, 829–837 (2012).
  • 107. Qian Y, Daza J, Itzel T et al. Prognostic cancer gene expression signatures: current status and challenges. Cells 10, (2021).
  • 108. Huo X, Zhou X, Peng P et al. Identification of a six-gene signature for predicting the overall survival of cervical cancer patients. Onco Targets Ther. 14, 809–822 (2021).
  • 109. Shi K, Lin W, Zhao XM. Identifying molecular biomarkers for diseases with machine learning based on integrative omics. IEEE/ACM Trans. Comput. Biol. Bioinform. 18, 2514–2525 (2021).
  • 110. Zeuschner P, Linxweiler J, Junker K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev. Mol. Diagn. 20, 151–167 (2020).
  • 111. Deng J, Tang J, Wang G, Zhu YS. Long non-coding RNA as potential biomarker for prostate cancer: is it making a difference? Int. J. Environ. Res. Public Health 14, (2017).
  • 112. Locke WJ, Guanzon D, Ma C et al. DNA methylation cancer biomarkers: translation to the clinic. Front. Genet. 10, 1150 (2019).
  • 113. Gurioli G, Martignano F, Salvi S, Costantini M, Gunelli R, Casadio V. GSTP1 methylation in cancer: a liquid biopsy biomarker? Clin. Chem. Lab. Med. 56, 702–717 (2018).
  • 114. Sinnott JA, Peisch SF, Tyekucheva S et al. Prognostic utility of a new mRNA expression signature of Gleason Score. Clin. Cancer Res. 23, 81–87 (2017).
  • 115. Huang TB, Dong CP, Zhou GC et al. A potential panel of four-long noncoding RNA signature in prostate cancer predicts biochemical recurrence-free survival and disease-free survival. Int. Urol. Nephrol. 49, 825–835 (2017).
  • 116. Xin L, Liu YH, Martin TA, Jiang WG. The era of multigene panels comes? The clinical utility of Oncotype DX and MammaPrint. World J. Oncol. 8, 34–40 (2017).
  • 117. Paller CJ, Antonarakis ES. Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. Clin. Adv. Hematol. Oncol. 11, 14–23 (2013).
  • 118. Lam D, Clark S, Stirzaker C, Pidsley R. Advances in prognostic methylation biomarkers for prostate cancer. Cancers (Basel) 12, (2020).
  • 119. Bates SE. Epigenetic therapies for cancer. N. Engl. J. Med. 383, 650–663 (2020).
  • 120. Groselj B, Sharma NL, Hamdy FC, Kerr M, Kiltie AE. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br. J. Cancer 108, 748–754 (2013).
  • 121. Frame FM, Pellacani D, Collins AT et al. HDAC inhibitor confers radiosensitivity to prostate stem-like cells. Br. J. Cancer 109, 3023–3033 (2013).
  • 122. Xiao W, Graham PH, Hao J et al. Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells. PLOS ONE 8, e74253 (2013).
  • 123. Crea F, Hurt EM, Mathews LA et al. Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol. Cancer 10, 40 (2011).
  • 124. Milosevich N, McFarlane J, Gignac MC et al. Pan-specific and partially selective dye-labeled peptidic inhibitors of the polycomb paralog proteins. Bioorg. Med. Chem. 28, 115176 (2020).
  • 125. Gieni RS, Ismail IH, Campbell S, Hendzel MJ. Polycomb group proteins in the DNA damage response: a link between radiation resistance and “stemness”. Cell Cycle 10, 883–894 (2011).
  • 126. Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020).
  • 127. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother. Res. Pract. 2014, 357027 (2014).
  • 128. Jeyakumar A, Younis T. Trastuzumab for HER2-positive metastatic breast cancer: clinical and economic considerations. Clin. Med. Insights Oncol. 6, 179–187 (2012).
  • 129. Yan W, Herman JG, Guo M. Epigenome-based personalized medicine in human cancer. Epigenomics 8, 119–133 (2016).
  • 130. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).
  • 131. Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D, Galibert MD. The powerful world of antisense oligonucleotides: from bench to bedside. Wiley Interdiscip. Rev. RNA 11, e1594 (2020).
  • 132. Mahmoodi Chalbatani G, Dana H, Gharagouzloo E et al. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int. J. Nanomedicine 14, 3111–3128 (2019).
  • 133. Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87, 46–51 (2015).
  • 134. Herkt M, Thum T. Pharmacokinetics and proceedings in clinical application of nucleic acid therapeutics. Mol. Ther. 29, 521–539 (2021).
  • 135. Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenetics 11, 174 (2019).
  • 136. Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol. 11, 733 (2020).