We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research ArticleOpen Accesscc iconby iconnc iconnd icon

Opioid medication use and blood DNA methylation: epigenome-wide association meta-analysis

    Mikyeong Lee

    Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA

    ,
    Roby Joehanes

    Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA

    ,
    Daniel L McCartney

    Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK

    ,
    Minjung Kho

    Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

    ,
    Anke Hüls

    Department of Epidemiology & Gangarosa, Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA

    ,
    Annah B Wyss

    Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA

    ,
    Chunyu Liu

    Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02215, USA

    Framingham Heart Study, Boston University, Framingham, MA 01702, USA

    ,
    Rosie M Walker

    Centre for Clinical Brain Science, Chancellor's Building, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, UK

    School of Psychology, University of Exeter, Exeter, UK

    ,
    Sharon L R Kardia

    Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

    ,
    Thomas S Wingo

    Department of Neurology & Human Genetics, Emory University, Atlanta, GA 30322, USA

    ,
    Adam Burkholder

    Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA

    ,
    Jiantao Ma

    Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA

    ,
    Archie Campbell

    Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK

    ,
    Aliza P Wingo

    Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322, USA

    ,
    Tianxiao Huan

    Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA

    Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA 01655, USA

    ,
    Sinjini Sikdar

    Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA

    Department of Mathematics & Statistics, Old Dominion University, Norfolk, VA 23529, USA

    ,
    Amena Keshawarz

    Framingham Heart Study, Framingham, MA 01702, USA

    Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA

    ,
    David A Bennett

    Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA

    ,
    Jennifer A Smith

    Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

    ,
    Kathryn L Evans

    Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK

    ,
    Daniel Levy

    Department of Health and Human Services, Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, MA 01702, USA

    &
    Stephanie J London

    *Author for correspondence:

    E-mail Address: london2@niehs.nih.gov

    Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA

    Published Online:https://doi.org/10.2217/epi-2022-0353

    Aim: To identify differential methylation related to prescribed opioid use. Methods: This study examined whether blood DNA methylation, measured using Illumina arrays, differs by recent opioid medication use in four population-based cohorts. We meta-analyzed results (282 users; 10,560 nonusers) using inverse-variance weighting. Results: Differential methylation (false discovery rate <0.05) was observed at six CpGs annotated to the following genes: KIAA0226, CPLX2, TDRP, RNF38, TTC23 and GPR179. Integrative epigenomic analyses linked implicated loci to regulatory elements in blood and/or brain. Additionally, 74 CpGs were differentially methylated in males or females. Methylation at significant CpGs correlated with gene expression in blood and/or brain. Conclusion: This study identified DNA methylation related to opioid medication use in general populations. The results could inform the development of blood methylation biomarkers of opioid use.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Kieffer BL, Evans CJ. Opioid receptors: from binding sites to visible molecules in vivo. Neuropharmacology 56(Suppl. 1), S205–S212 (2009).
    • 2. Mattson CL, Tanz LJ, Quinn K, Kariisa M, Patel P, Davis NL. Trends and geographic patterns in drug and synthetic opioid overdose deaths – United States, 2013–2019. MMWR Morb. Mortal. Wkly Rep. 70(6), 202–207 (2021).
    • 3. Joehanes R, Just AC, Marioni RE et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9(5), 436–447 (2016). • A large-scale meta-analysis identifying blood DNA methylation alterations related to smoking.
    • 4. Liu C, Marioni RE, Hedman AK et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23(2), 422–433 (2018). • A large-scale meta-analysis identifying blood DNA methylation alterations related to alcohol consumption.
    • 5. Andersen AM, Ryan PT, Gibbons FX, Simons RL, Long JD, Philibert RA. A droplet digital PCR assay for smoking predicts all-cause mortality. J. Insur. Med. 47(4), 220–229 (2018).
    • 6. Chorbov VM, Todorov AA, Lynskey MT, Cicero TJ. Elevated levels of DNA methylation at the OPRM1 promoter in blood and sperm from male opioid addicts. J. Opioid Manage. 7(4), 258 (2011).
    • 7. Doehring A, Oertel BG, Sittl R, Lotsch J. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain 154(1), 15–23 (2013).
    • 8. Montalvo-Ortiz JL, Cheng Z, Kranzler HR, Zhang H, Gelernter J. Genomewide study of epigenetic biomarkers of opioid dependence in European-American Women. Sci. Rep. 9(1), 4660 (2019).
    • 9. Xu J, Wang T, Su Z et al. Opioid exposure is associated with aberrant DNA methylation of OPRM1 promoter region in a Chinese Han population. Biochem. Genet. 56(5), 451–458 (2018).
    • 10. Sandoval-Sierra JV, Salgado Garcia FI, Brooks JH, Derefinko KJ, Mozhui K. Effect of short-term prescription opioids on DNA methylation of the OPRM1 promoter. Clin. Epigenetics 12(1), 76 (2020).
    • 11. Ebrahimi G, Asadikaram G, Akbari H et al. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. Am. J. Drug Alcohol Abuse 44(2), 193–199 (2018).
    • 12. Craft RM. Sex differences in analgesic, reinforcing, discriminative, and motoric effects of opioids. Exp. Clin. Psychopharmacol. 16(5), 376–385 (2008).
    • 13. Mazure CM, Fiellin DA. Women and opioids: something different is happening here. Lancet 392(10141), 9–11 (2018).
    • 14. Weiner SG, El Ibrahimi S, Hendricks MA et al. Factors associated with opioid overdose after an initial opioid prescription. JAMA Netw. Open 5(1), e2145691 (2022).
    • 15. Kaplovitch E, Gomes T, Camacho X, Dhalla IA, Mamdani MM, Juurlink DN. Sex differences in dose escalation and overdose death during chronic opioid therapy: a population-based cohort study. PLOS ONE 10(8), e0134550 (2015).
    • 16. Kelley K, Kelley T, Kaufman D, Mitchell A. The Slone Drug Dictionary: a research driven pharmacoepidemiology tool. Pharmacoepidemiol. Drug Saf. 12(Suppl. 1), S168–S169 (2003).
    • 17. Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 45(4), e22 (2017). • An extensive characterization of DNA methylation probes on the Illumina EPIC and 450K microarrays.
    • 18. Davidov O, Jelsema CM, Peddada S. Testing for inequality constraints in singular models by trimming or winsorizing the variance matrix. J. Am. Stat. Assoc. 113(522), 906–918 (2018).
    • 19. Houseman EA, Accomando WP, Koestler DC et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86 (2012). • A method for inferring cell-type proportions using DNA methylation signatures.
    • 20. Rice K, Higgins JPT, Lumley T. A re-evaluation of fixed effect(s) meta-analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 181(1), 205–227 (2018).
    • 21. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17), 2190–2191 (2010).
    • 22. Benjamini Y, Hochberg Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57(1), 289–300 (1995).
    • 23. Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated p-values. Bioinformatics 28(22), 2986–2988 (2012).
    • 24. Xu Z, Xie C, Taylor JA, Niu L. ipDMR: identification of differentially methylated regions with interval p-values. Bioinformatics 37(5), 711–713 (2021).
    • 25. Sidak Z. Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62(318), 8 (1967).
    • 26. Breeze CE, Reynolds AP, Van Dongen J et al. eFORGE v2.0: updated analysis of cell type-specific signal in epigenomic data. Bioinformatics 35(22), 4767–4769 (2019). • A method useful when identifying enriched cell type-specific signals in epigenome-wide association results.
    • 27. Breeze CE. Cell type-specific signal analysis in EWAS. bioRxiv doi: 10.1101/2021.05.21.445209 2021.2005.2021.445209 (2021) (Epub ahead of print).
    • 28. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W et al. Integrative analysis of 111 reference human epigenomes. Nature 518(7539), 317–330 (2015).
    • 29. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 43(W1), W39–W49 (2015).
    • 30. Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28(4), 573–580 (2012).
    • 31. Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102(43), 15545–15550 (2005).
    • 32. Ren X, Kuan PF. methylGSA: a bioconductor package and shiny app for DNA methylation data length bias adjustment in gene set testing. Bioinformatics 35(11), 1958–1959 (2019).
    • 33. Carlson M. org.Hs.eg.db: genome wide annotation for human. R package version 3.8.2. (2019). https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
    • 34. Huan T, Joehanes R, Song C et al. Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease. Nat. Commun. 10(1), 4267 (2019).
    • 35. Huls A, Robins C, Conneely KN et al. Brain DNA methylation patterns in CLDN5 associated with cognitive decline. Biol. Psychiatry 91(4), 389–398 (2022).
    • 36. Min JL, Hemani G, Hannon E et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat. Genet. 53(9), 1311–1321 (2021). • A paper reporting genetic influences on DNA methylation.
    • 37. Winkler TW, Kutalik Z, Gorski M, Lottaz C, Kronenberg F, Heid IM. EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data. Bioinformatics 31(2), 259–261 (2015).
    • 38. Sun Z, Zhang Y, Jia J et al. H3K36me3, message from chromatin to DNA damage repair. Cell Biosc. 10, 9 (2020).
    • 39. McLeay RC, Bailey TL. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11, 165 (2010).
    • 40. Melik Parsadaniantz S, Rivat C, Rostene W, Reaux-Le Goazigo A. Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat. Rev. Neurosci. 16(2), 69–78 (2015).
    • 41. Montague K, Malcangio M. The therapeutic potential of targeting chemokine signalling in the treatment of chronic pain. J. Neurochem. 141(4), 520–531 (2017).
    • 42. Spiers H, Hannon E, Schalkwyk LC et al. Methylomic trajectories across human fetal brain development. Genome Res. 25(3), 338–352 (2015).
    • 43. Assoum M, Salih MA, Drouot N et al. Rundataxin, a novel protein with RUN and diacylglycerol binding domains, is mutant in a new recessive ataxia. Brain 133(Pt. 8), 2439–2447 (2010).
    • 44. Seidahmed MZ, Hamad MH, Albakheet A et al. Ancient founder mutation in RUBCN: a second unrelated family confirms Salih ataxia (SCAR15). BMC Neurol. 20(1), 207 (2020).
    • 45. Begemann M, Grube S, Papiol S et al. Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch. Gen. Psychiatry 67(9), 879–888 (2010).
    • 46. Harich B, Klein M, Ockeloen CW et al. From man to fly – convergent evidence links FBXO25 to ADHD and comorbid psychiatric phenotypes. J. Child Psychol. Psychiatry 61(5), 545–555 (2020).
    • 47. Cham KL, Soga T, Parhar IS. Expression of RING finger protein 38 in serotonergic neurons in the brain of Nile tilapia, Oreochromis niloticus. Front. Neuroanat. 12, 109 (2018).
    • 48. Moriya S, Khel NB, Parhar IS. Cloning and serotonergic regulation of RING finger protein38 (rnf38) in the brain of medaka (Oryzias latipes). Neuroscience 294, 109–115 (2015).
    • 49. Li M, Li Y, Qin H et al. Genome-wide DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia in the Chinese Han population. Mol. Psychiatry 26(8), 4475–4485 (2021).
    • 50. Xiang C, Baubet V, Pal S et al. RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. Cell Death Differ. 19(4), 692–702 (2012).
    • 51. Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 10(11), 1024–1032 (2015).