We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine
Research Article

DNA methylation status of DNAJA4 is essential for human erythropoiesis

    Hengchao Zhang‡

    School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Fumin Xue‡

    Department of Gastroenterology, Children’s Hospital affiliated of Zhengzhou University, Zhengzhou, 450000, China

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Huizhi Zhao

    School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China

    ,
    Lixiang Chen

    School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China

    ,
    Ting Wang

    *Author for correspondence:

    E-mail Address: tingwang@zzu.edu.cn

    School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China

    &
    Xiuyun Wu

    **Author for correspondence:

    E-mail Address: wuxy@zzu.edu.cn

    School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China

    Published Online:https://doi.org/10.2217/epi-2022-0341

    Aims: To investigate DNA methylation patterns in early and terminal stages of erythropoiesis, and to explore the function of differentially methylated genes in erythropoiesis and erythroid disorders. Materials & methods: Differential analysis of DNA methylation and gene expression during erythropoiesis, as well as weighted gene coexpression network analysis of acute myeloid leukemia was performed. Results: We identified four candidate genes that possessed differential methylation in the promoter regions. DNAJA4 affected proliferation, apoptosis and enucleation during terminal erythropoiesis and was associated with the prognosis of acute myeloid leukemia. DNAJA4 was specifically highly expressed in erythroleukemia and is associated with DNA methylation. Conclusion:DNAJA4 plays a crucial role for erythropoiesis and is regulated via DNA methylation. Dysregulation of DNAJA4 expression is associated with erythroid disorders.

    Tweetable abstract

    DNAJA4 is a novel regulator of terminal erythropoiesis which is regulated by DNA methylation, and its dysregulated expression is closely associated with impaired erythropoiesis in erythroid disorders.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Stephenson JR, Axelrad AA, Mcleod DL, Shreeve MM. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl Acad. Sci. USA 68(7), 1542–1546 (1971).
    • 2. Hu J, Liu J, Xue F et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121(16), 3246–3253 (2013). •• This seminal study was established to isolate and quantify the distinct stages of terminal erythropoiesis in vivo.
    • 3. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 118(24), 6258–6268 (2011).
    • 4. Sankaran VG, Gallagher PG. Applications of high-throughput DNA sequencing to benign hematology. Blood 122(22), 3575–3582 (2013).
    • 5. Cancer Genome Atlas Research Network, Ley TJ, Miller C et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368(22), 2059–2074 (2013).
    • 6. Busque L, Patel JP, Figueroa ME et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 44(11), 1179–1181 (2012).
    • 7. Shlush LI, Zandi S, Mitchell A et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506(7488), 328–333 (2014).
    • 8. Schulz VP, Yan H, Lezon-Geyda K et al. A unique epigenomic landscape defines human erythropoiesis. Cell Rep. 28(11), 2996–3009 e2997 (2019). •• This bioinformatics work revealed a unique epigenetic landscape in erythropoiesis.
    • 9. Bartholdy B, Lajugie J, Yan Z et al. Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv. 2(15), 1833–1852 (2018).
    • 10. Haladyna JN, Yamauchi T, Neff T, Bernt KM. Epigenetic modifiers in normal and malignant hematopoiesis. Epigenomics 7(2), 301–320 (2015). • This new work comprehensively compares the function of epigenetic modifying enzymes in normal development and hematopoietic malignancies.
    • 11. Sall C, Fogt Hjorth C. In vitro drug–drug interactions of decitabine and tetrahydrouridine involving drug transporters and drug metabolising enzymes. Xenobiotica 52(1), 1–15 (2022).
    • 12. Craig EA, Huang P, Aron R, Andrew A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol. Biochem. Pharmacol. 156, 1–21 (2006).
    • 13. Tummala H, Walne AJ, Williams M et al. DNAJC21 mutations link a cancer-prone bone marrow failure syndrome to corruption in 60S ribosome subunit maturation. Am. J. Hum. Genet. 99(1), 115–124 (2016).
    • 14. Wang D, Zeng T, Lin Z et al. Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia. Biomed. Pharmacother. 123, 109802 (2020).
    • 15. Kadakia R, Zheng Y, Zhang Z, Zhang W, Josefson JL, Hou L. Association of cord blood methylation with neonatal leptin: an epigenome wide association study. PLOS ONE 14(12), e0226555 (2019).
    • 16. Mahoney SE, Yao Z, Keyes CC, Tapscott SJ, Diede SJ. Genome-wide DNA methylation studies suggest distinct DNA methylation patterns in pediatric embryonal and alveolar rhabdomyosarcomas. Epigenetics 7(4), 400–408 (2012).
    • 17. Roifman M, Choufani S, Turinsky AL et al. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clin. Epigenetics 8, 70 (2016).
    • 18. Qu X, Zhang S, Wang S et al. TET2 deficiency leads to stem cell factor-dependent clonal expansion of dysfunctional erythroid progenitors. Blood 132(22), 2406–2417 (2018).
    • 19. Xu J, Shao Z, Glass K et al. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev. Cell 23(4), 796–811 (2012).
    • 20. Pellagatti A, Cazzola M, Giagounidis A et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 24(4), 756–764 (2010).
    • 21. Raghavachari N, Xu X, Munson PJ, Gladwin MT. Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease. PLOS ONE 4(8), e6484 (2009).
    • 22. Nanou A, Toumpeki C, Fanis P et al. Sex-specific transcriptional profiles identified in beta-thalassemia patients. Haematologica 106(4), 1207–1211 (2021).
    • 23. Gao J, Aksoy BA, Dogrusoz U et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269), pl1 (2013).
    • 24. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014).
    • 25. Tsherniak A, Vazquez F, Montgomery PG et al. Defining a cancer dependency map. Cell 170(3), 564–576 e516 (2017). • This novel study provides a database of tumor cell lines with great potential.
    • 26. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14(4), R36 (2013).
    • 27. Trapnell C, Roberts A, Goff L et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7(3), 562–578 (2012).
    • 28. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27(11), 1571–1572 (2011).
    • 29. Akalin A, Kormaksson M, Li S et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13(10), R87 (2012).
    • 30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357–359 (2012).
    • 31. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42(Web Server issue), W187–W191 (2014).
    • 32. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
    • 33. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47(W1), W556–W560 (2019).
    • 34. Perkins A. Erythroid Kruppel like factor: from fishing expedition to gourmet meal. Int. J. Biochem. Cell Biol. 31(10), 1175–1192 (1999).
    • 35. Tallack MR, Whitington T, Yuen WS et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res. 20(8), 1052–1063 (2010).
    • 36. Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25(9), 1379–1388 (2011).
    • 37. Challen GA, Boles NC, Chambers SM, Goodell MA. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 6(3), 265–278 (2010).
    • 38. Yu Y, Mo Y, Ebenezer D et al. High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J. Biol. Chem. 288(13), 8805–8814 (2013).
    • 39. An X, Schulz VP, Li J et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 123(22), 3466–3477 (2014).•• This primary study revealed a transcriptome profile of terminal erythropoiesis in human and mouse.
    • 40. Grosso R, Fader CM, Colombo MI. Autophagy: a necessary event during erythropoiesis. Blood Rev. 31(5), 300–305 (2017).
    • 41. Liu Q, Luo L, Ren C et al. The opposing roles of the mTOR signaling pathway in different phases of human umbilical cord blood-derived CD34+ cell erythropoiesis. Stem Cells 38(11), 1492–1505 (2020).
    • 42. Lahiri A, Hedl M, Abraham C. MTMR3 risk allele enhances innate receptor-induced signaling and cytokines by decreasing autophagy and increasing caspase-1 activation. Proc Natl Acad. Sci. USA 112(33), 10461–10466 (2015).
    • 43. Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 16(1), 38–51 (2020).
    • 44. Mengus C, Neutzner M, Bento A et al. VCP/p97 cofactor UBXN1/SAKS1 regulates mitophagy by modulating MFN2 removal from mitochondria. Autophagy 18(1), 171–190 (2022).
    • 45. Papadopoulos C, Kirchner P, Bug M et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. 36(2), 135–150 (2017).
    • 46. Balwani M, Sardh E, Ventura P et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382(24), 2289–2301 (2020).
    • 47. Zhang Y, Xiao H, Xiong Q, Wu C, Li P. Two novel hydroxymethylbilane synthase splicing mutations predispose to acute intermittent porphyria. Int. J. Mol. Sci. 22(20), 11008 (2021).
    • 48. Hohfeld J. Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol. Chem. 379(3), 269–274 (1998).
    • 49. Takayama S, Xie Z, Reed JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274(2), 781–786 (1999).
    • 50. Alholle A, Brini AT, Gharanei S et al. Functional epigenetic approach identifies frequently methylated genes in Ewing sarcoma. Epigenetics 8(11), 1198–1204 (2013). • This study revealed that DNAJA4 expression was regulated by DNA methylation in Ewing sarcoma.
    • 51. Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 106(6), 1519–1534 (2021).
    • 52. Duan Y, Wang H, Mitchell-Silbaugh K et al. Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis. 10(10), 766 (2019).
    • 53. Ghosh A, Garee G, Sweeny EA, Nakamura Y, Stuehr DJ. Hsp90 chaperones hemoglobin maturation in erythroid and nonerythroid cells. Proc. Natl Acad. Sci. USA 115(6), E1117–E1126 (2018).
    • 54. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet 376(9757), 2018–2031 (2010).
    • 55. Ades L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet 383(9936), 2239–2252 (2014).
    • 56. Colah R, Gorakshakar A, Nadkarni A. Global burden, distribution and prevention of beta-thalassemias and hemoglobin E disorders. Expert Rev. Hematol. 3(1), 103–117 (2010).
    • 57. Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N. Engl. J. Med. 341(14), 1051–1062 (1999).
    • 58. Estey E, Dohner H. Acute myeloid leukaemia. Lancet 368(9550), 1894–1907 (2006).
    • 59. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N. Engl. J. Med. 373(12), 1136–1152 (2015).
    • 60. Bennett JM, Catovsky D, Daniel MT et al. Proposals for the classification of chronic (mature) B and T lymphoid leukaemias. French–American–British (FAB) Cooperative Group. J. Clin. Pathol. 42(6), 567–584 (1989).
    • 61. Kirtonia A, Pandya G, Sethi G, Pandey AK, Das BC, Garg M. A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia. J. Mol. Med. 98(8), 1069–1091 (2020).
    • 62. Lee HJ, Hore TA, Reik W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14(6), 710–719 (2014).
    • 63. Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139(1), 15–31 (2012).
    • 64. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 16(1), 6–21 (2002).
    • 65. Hackett JA, Surani MA. Beyond DNA: programming and inheritance of parental methylomes. Cell 153(4), 737–739 (2013).
    • 66. Arlet JB, Ribeil JA, Guillem F et al. HSP70 sequestration by free alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia. Nature 514(7521), 242–246 (2014).
    • 67. Frisan E, Vandekerckhove J, De Thonel A et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood 119(6), 1532–1542 (2012).
    • 68. Ribeil JA, Zermati Y, Vandekerckhove J et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445(7123), 102–105 (2007).
    • 69. Sun YZ, Ren Y, Zhang YJ et al. DNAJA4 deficiency enhances NF-kappa B-related growth arrest induced by hyperthermia in human keratinocytes. J. Dermatol. Sci. 91(3), 256–267 (2018).
    • 70. Wei ZD, Sun YZ, Tu CX et al. DNAJA4 deficiency augments hyperthermia-induced clusterin and ERK activation: two critical protective factors of human keratinocytes from hyperthermia-induced injury. J. Eur. Acad. Dermatol. Venereol. 34(10), 2308–2317 (2020).
    • 71. He L, Kennedy AS, Houck S et al. DNAJB12 and Hsp70 triage arrested intermediates of N1303K-CFTR for endoplasmic reticulum-associated autophagy. Mol. Biol. Cell 32(7), 538–553 (2021).