We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Epigenomic effects of vitamin D in colorectal cancer

    Reza Khayami

    Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

    ,
    David Goltzman

    Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada

    ,
    Shafaat A Rabbani

    Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada

    &
    Mohammad Amin Kerachian

    *Author for correspondence: Tel.: +91 7789 9191;

    E-mail Address: amin.kerachian@mail.mcgill.ca

    Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

    Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

    Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada

    Published Online:https://doi.org/10.2217/epi-2022-0288

    Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.

    Graphical abstract

    Plain language summary

    Vitamin D regulates various physiological processes in the body and could have anticancer effects. These anticancer effects are the result of interactions between many factors such as genes, the environment around the tumors, bacteria in the intestine, etc. in colorectal cancer. Epigenetic factors, including a big network of different molecules in the body that could control our genes without changing DNA, also play a role in regulating vitamin D. This review summarizes the advances in the understanding of different epigenetic factors related to vitamin D and colorectal cancer.

    Tweetable abstract

    The present review describes the role of Vitamin D and epigenetic factors in tumorigenesis and their roles as potential targets for #ColorectalCancer treatment.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 21(3), 319–329 (2014). • A comprehensive review on the metabolism of vitamin D and its mechanism of action.
    • 2. Goltzman D. Functions of vitamin D in bone. Histochem. Cell Biol. 149(4), 305–312 (2018).
    • 3. Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann. Oncol. 30(5), 733–743 (2019). •• An updated meta-analysis of randomized clinical trials that focuses on the effect of vitamin D supplementation on cancer mortality and incidence in more than 6000 samples.
    • 4. Zhang Y, Fang F, Tang J et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ 366, l4673 (2019).
    • 5. Chandler PD, Chen WY, Ajala ON et al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw. Open 3(11), e2025850 (2020). •• Clinical trial on more than 25,000 patients with cancer evaluating the effect of vitamin D supplementation.
    • 6. Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 14(5), 342–357 (2014).
    • 7. Dou R, Ng K, Giovannucci EL, Manson JE, Qian ZR, Ogino S. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br. J. Nutr. 115(9), 1643–1660 (2016).
    • 8. Janakiram NB, Mohammed A, Madka V, Kumar G, Rao CV. Prevention and treatment of cancers by immune modulating nutrients. Mol. Nutr. Food Res. 60(6), 1275–1294 (2016).
    • 9. Van Harten-Gerritsen AS, Balvers MG, Witkamp RF, Kampman E, Van Duijnhoven FJ. Vitamin D, inflammation, and colorectal cancer progression: a review of mechanistic studies and future directions for epidemiological studies. Cancer Epidemiol. Biomarkers Prev. 24(12), 1820–1828 (2015).
    • 10. Veldhoen M, Brucklacher-Waldert V. Dietary influences on intestinal immunity. Nat. Rev. Immunol. 12(10), 696–708 (2012).
    • 11. Von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat. Immunol. 11(4), 344–349 (2010).
    • 12. Song M, Nishihara R, Wang M et al. Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut 65(2), 296–304 (2016).
    • 13. Meeker S, Seamons A, Paik J et al. Increased dietary vitamin D suppresses MAPK signaling, colitis, and colon cancer. Cancer Res. 74(16), 4398–4408 (2014).
    • 14. Almouazen E, Bourgeois S, Jordheim LP, Fessi H, Briançon S. Nano-encapsulation of vitamin D3 active metabolites for application in chemotherapy: formulation study and in vitro evaluation. Pharm. Res. 30(4), 1137–1146 (2013).
    • 15. Glowka E, Stasiak J, Lulek J. Drug delivery systems for vitamin D supplementation and therapy. Pharmaceutics 11(7), 347 (2019).
    • 16. Jain KK. Current status and future prospects of drug delivery systems. Methods Mol. Biol. 1141, 1–56 (2014).
    • 17. Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(2), 271–299 (2016).
    • 18. Duffy MJ, Murray A, Synnott NC, O'donovan N, Crown J. Vitamin D analogues: potential use in cancer treatment. Crit. Rev. Oncol. Hematol. 112, 190–197 (2017).
    • 19. Siegel RL, Miller KD, Goding Sauer A et al. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70(3), 145–164 (2020).
    • 20. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 394(10207), 1467–1480 (2019). •• A great review summarizing colorectal cancer etiology, diagnosis, and treatment status.
    • 21. Wassenaar TM. E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit. Rev. Microbiol. 44(5), 619–632 (2018).
    • 22. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16(11), 690–704 (2019). • Focuses on clinical applications of gut microbiota in screening, prognosis, prediction and prevention of cancer.
    • 23. Hessami Arani S, Kerachian MA. Rising rates of colorectal cancer among younger Iranians: is diet to blame? Curr. Oncol. 24(2), e131–e137 (2017).
    • 24. Gandini S, Boniol M, Haukka J et al. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int. J. Cancer 128(6), 1414–1424 (2011).
    • 25. Lee JE, Li H, Chan AT et al. Circulating levels of vitamin D and colon and rectal cancer: the Physicians' Health Study and a meta-analysis of prospective studies. Cancer Prev. Res. (Phila.) 4(5), 735–743 (2011).
    • 26. Ma Y, Zhang P, Wang F, Yang J, Liu Z, Qin H. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J. Clin. Oncol. 29(28), 3775–3782 (2011).
    • 27. Touvier M, Chan DS, Lau R et al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 20(5), 1003–1016 (2011).
    • 28. Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int. J. Epidemiol. 9(3), 227–231 (1980).
    • 29. Garland CF, Comstock GW, Garland FC, Helsing KJ, Shaw EK, Gorham ED. Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet 2(8673), 1176–1178 (1989).
    • 30. Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148(6), 1244–1260.e1216 (2015).
    • 31. Ng K, Sargent DJ, Goldberg RM et al. Vitamin D status in patients with stage IV colorectal cancer: findings from Intergroup trial N9741. J. Clin. Oncol. 29(12), 1599–1606 (2011).
    • 32. McCullough ML, Zoltick ES, Weinstein SJ et al. Circulating vitamin D and colorectal cancer risk: an international pooling project of 17 cohorts. J. Natl Cancer Inst. 111(2), 158–169 (2019).
    • 33. Urashima M, Ohdaira H, Akutsu T et al. Effect of vitamin D supplementation on relapse-free survival among patients with digestive tract cancers: the AMATERASU randomized clinical trial. JAMA 321(14), 1361–1369 (2019).
    • 34. Ng K, Nimeiri HS, Mccleary NJ et al. Effect of high-dose vs standard-dose vitamin D3 supplementation on progression-free survival among patients with advanced or metastatic colorectal cancer: the SUNSHINE randomized clinical trial. JAMA 321(14), 1370–1379 (2019).
    • 35. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am. J. Clin. Nutr. 85(6), 1586–1591 (2007).
    • 36. Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res. 76(12), 3446–3450 (2016).
    • 37. Mahmood N, Rabbani SA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front. Oncol. 9, 489 (2019).
    • 38. Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol. 51, 149–159 (2018).
    • 39. Chik F, Szyf M, Rabbani SA. Role of epigenetics in cancer initiation and progression. Adv. Exp. Med. Biol. 720, 91–104 (2011).
    • 40. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3(6), 415–428 (2002).
    • 41. Patil V, Ward RL, Hesson LB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9(6), 823–828 (2014).
    • 42. Bhattacharya SK, Ramchandani S, Cervoni N, Szyf M. A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397(6720), 579–583 (1999).
    • 43. Cheishvili D, Chik F, Li CC et al. Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2′-deoxycytidine-triggered invasiveness. Carcinogenesis 35(11), 2436–2446 (2014).
    • 44. Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18(11), 6538–6547 (1998).
    • 45. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics 1(2), 239–259 (2009).
    • 46. Robertson KD. DNA methylation and human disease. Nat. Rev. Genet. 6(8), 597–610 (2005).
    • 47. Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature 571(7766), 489–499 (2019).
    • 48. Chen Q, Zhu C, Jin Y. The oncogenic and tumor suppressive functions of the long noncoding RNA MALAT1: an emerging controversy. Front. Genet. 11, 93 (2020).
    • 49. Poursheikhani A, Abbaszadegan MR, Kerachian MA. Mechanisms of long non-coding RNA function in colorectal cancer tumorigenesis. Asia Pac. J. Clin. Oncol. 17(1), 7–23 (2021).
    • 50. Yang X, Liu M, Li M et al. Epigenetic modulations of noncoding RNA: a novel dimension of cancer biology. Mol. Cancer 19(1), 64 (2020).
    • 51. Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 51, 11–17 (2019).
    • 52. Gillette TG, Hill JA. Readers, writers, and erasers. Circ. Res. 116(7), 1245–1253 (2015).
    • 53. Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 171(1), 34–57 (2017).
    • 54. McDonald OG, Li X, Saunders T et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet. 49(3), 367–376 (2017).
    • 55. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1(1), 19–25 (2007).
    • 56. Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics 8(1), 57 (2016).
    • 57. Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J. Hematol. Oncol. 12(1), 129 (2019).
    • 58. Herman JG, Umar A, Polyak K et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. U. S. A. 95(12), 6870–6875 (1998).
    • 59. Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17(2), 111–130 (2020).
    • 60. Hur K, Cejas P, Feliu J et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63(4), 635–646 (2014).
    • 61. Milicic A, Harrison LA, Goodlad RA et al. Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res. 68(19), 7760–7768 (2008).
    • 62. Nagai Y, Sunami E, Yamamoto Y et al. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 8(7), 11906–11916 (2017).
    • 63. Pérez RF, Tejedor JR, Bayón GF, Fernández AF, Fraga MF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell 17(3), e12744 (2018).
    • 64. Sunami E, De Maat M, Vu A, Turner RR, Hoon DS. LINE-1 hypomethylation during primary colon cancer progression. PLOS ONE 6(4), e18884 (2011).
    • 65. Luo J, Li YN, Wang F, Zhang WM, Geng X. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int. J. Biol. Sci. 6(7), 784–795 (2010).
    • 66. Antelo M, Balaguer F, Shia J et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLOS ONE 7(9), e45357 (2012).
    • 67. Baba Y, Yagi T, Sawayama H et al. Long interspersed element-1 methylation level as a prognostic biomarker in gastrointestinal cancers. Digestion 97(1), 26–30 (2018).
    • 68. Castellano-Castillo D, Morcillo S, Crujeiras AB et al. Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer 19(1), 93 (2019).
    • 69. McVeigh G, Galloway D, Johnston D. The case for low dose diuretics in hypertension: comparison of low and conventional doses of cyclopenthiazide. BMJ 297(6641), 95–98 (1988).
    • 70. Kerachian MA, Kerachian M. Long interspersed nucleotide element-1 (LINE-1) methylation in colorectal cancer. Clin. Chim. Acta 488, 209–214 (2019).
    • 71. Ogino S, Kawasaki T, Nosho K et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int. J. Cancer 122(12), 2767–2773 (2008).
    • 72. Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int. J. Colorectal Dis. 19(2), 95–101 (2004).
    • 73. Ma Y, Zhang P, Yang J, Liu Z, Yang Z, Qin H. Candidate microRNA biomarkers in human colorectal cancer: systematic review profiling studies and experimental validation. Int. J. Cancer 130(9), 2077–2087 (2012).
    • 74. Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis. Model. Mech. 10(3), 197–214 (2017).
    • 75. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 76(13), 3666–3670 (2016).
    • 76. Chen X, Guo X, Zhang H et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28(10), 1385–1392 (2009).
    • 77. Horiuchi A, Iinuma H, Akahane T, Shimada R, Watanabe T. Prognostic significance of PDCD4 expression and association with microRNA-21 in each Dukes' stage of colorectal cancer patients. Oncol. Rep. 27(5), 1384–1392 (2012).
    • 78. Peacock O, Lee AC, Cameron F et al. Inflammation and MiR-21 pathways functionally interact to downregulate PDCD4 in colorectal cancer. PLOS ONE 9(10), e110267 (2014).
    • 79. Wu Y, Song Y, Xiong Y et al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell. Physiol. Biochem. 43(3), 945–958 (2017).
    • 80. Luo ZF, Zhao D, Li XQ et al. Clinical significance of HOTAIR expression in colon cancer. World J. Gastroenterol. 22(22), 5254–5259 (2016).
    • 81. Schwarzenbach H. Biological and clinical relevance of H19 in colorectal cancer patients. EBioMedicine 13, 9–10 (2016).
    • 82. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8(4), a019521 (2016).
    • 83. Vaish V, Khare T, Verma M, Khare S. Epigenetic therapy for colorectal cancer. Methods Mol. Biol. 1238, 771–782 (2015).
    • 84. Huang T, Lin C, Zhong LL et al. Targeting histone methylation for colorectal cancer. Therap. Adv. Gastroenterol. 10(1), 114–131 (2017).
    • 85. Salz T, Li G, Kaye F, Zhou L, Qiu Y, Huang S. hSETD1A regulates Wnt target genes and controls tumor growth of colorectal cancer cells. Cancer Res. 74(3), 775–786 (2014).
    • 86. Mahmood N, Rabbani SA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front. Oncol. 9, 489 (2019).
    • 87. Quintero E, Castells A, Bujanda L et al. Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening. N. Engl. J. Med. 366(8), 697–706 (2012).
    • 88. Kormi SMA, Ardehkhani S, Kerachian MA. New insights into colorectal cancer screening and early detection tests. Colorectal Cancer 6(2), 63–68 (2017).
    • 89. Devos T, Tetzner R, Model F et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem. 55(7), 1337–1346 (2009).
    • 90. Jamialahmadi K, Azghandi M, Javadmanesh A, Zardadi M, Shams Davodly E, Kerachian MA. A DNA methylation panel for high performance detection of colorectal cancer. Cancer Genet. 252–253, 64–72 (2021).
    • 91. Yang Q, Huang T, Ye G, Wang B, Zhang X. Methylation of SFRP2 gene as a promising noninvasive biomarker using feces in colorectal cancer diagnosis: a systematic meta-analysis. Sci. Rep. 6, 33339 (2016).
    • 92. Boughanem H, Cabrera-Mulero A, Hernández-Alonso P et al. Association between variation of circulating 25-OH vitamin D and methylation of secreted frizzled-related protein 2 in colorectal cancer. Clin. Epigenetics 12(1), 83 (2020).
    • 93. Tapp HS, Commane DM, Bradburn DM et al. Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa. Aging Cell 12(1), 148–155 (2013).
    • 94. Rawson JB, Sun Z, Dicks E et al. Vitamin D intake is negatively associated with promoter methylation of the Wnt antagonist gene DKK1 in a large group of colorectal cancer patients. Nutr. Cancer 64(7), 919–928 (2012).
    • 95. Yang R, Zhang J, Li J et al. Inhibition of Nrf2 degradation alleviates age-related osteoporosis induced by 1,25-Dihydroxyvitamin D deficiency. Free Radic. Biol. Med. 178, 246–261 (2022).
    • 96. Gregoretti I, Lee Y-M, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338(1), 17–31 (2004).
    • 97. Sun M, Guo B. Vitamin D and the epigenetic machinery in colon cancer. Curr. Med. Chem. 24(9), 888–897 (2017).
    • 98. Godman CA, Joshi R, Tierney BR et al. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol. Ther. 7(10), 1570–1580 (2008).
    • 99. Hossain S, Liu Z, Wood RJ. Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells. J. Sci. Food Agric. 101(5), 1833–1843 (2021).
    • 100. Pereira F, Barbáchano A, Silva J et al. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum. Mol. Genet. 20(23), 4655–4665 (2011).
    • 101. Lan F, Bayliss PE, Rinn JL et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163), 689–694 (2007).
    • 102. De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130(6), 1083–1094 (2007).
    • 103. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA 104(47), 18439–18444 (2007).
    • 104. Agger K, Cloos PA, Christensen J et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163), 731–734 (2007).
    • 105. Pereira F, Barbáchano A, Singh PK, Campbell MJ, Muñoz A, Larriba MJ. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle 11(6), 1081–1089 (2012).
    • 106. Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology 145(2), 437–446 (2013).
    • 107. Kasiappan R, Shen Z, Tse AK et al. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J. Biol. Chem. 287(49), 41297–41309 (2012).
    • 108. Komagata S, Nakajima M, Takagi S, Mohri T, Taniya T, Yokoi T. Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol. Pharmacol. 76(4), 702–709 (2009).
    • 109. Ting HJ, Messing J, Yasmin-Karim S, Lee YF. Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J. Biol. Chem. 288(1), 1–9 (2013).
    • 110. Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T. MicroRNA regulates human vitamin D receptor. Int. J. Cancer 125(6), 1328–1333 (2009).
    • 111. Gocek E, Wang X, Liu X, Liu CG, Studzinski GP. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res. 71(19), 6230–6239 (2011).
    • 112. Wang X, Gocek E, Liu CG, Studzinski GP. MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle 8(5), 736–741 (2009).
    • 113. Giangreco AA, Vaishnav A, Wagner D et al. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev. Res. (Phila.) 6(5), 483–494 (2013).
    • 114. Negri M, Gentile A, De Angelis C et al. Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients 12(6), 1798 (2020).
    • 115. Wang J, Li Y, Ding M, Zhang H, Xu X, Tang J. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (review). Int. J. Oncol. 50(2), 345–355 (2017).
    • 116. Alvarez-Díaz S, Valle N, Ferrer-Mayorga G et al. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum. Mol. Genet. 21(10), 2157–2165 (2012).
    • 117. Sun M, Zhang Q, Yang X, Qian SY, Guo B. Vitamin D enhances the efficacy of irinotecan through miR-627-mediated inhibition of intratumoral drug metabolism. Mol. Cancer Ther. 15(9), 2086–2095 (2016).
    • 118. Lin W, Zou H, Mo J et al. Micro1278 leads to tumor growth arrest, enhanced sensitivity to oxaliplatin and vitamin D and inhibits metastasis via KIF5B, CYP24A1, and BTG2, respectively. Front. Oncol. 11, 637878 (2021).
    • 119. Essa S, Denzer N, Mahlknecht U et al. VDR microRNA expression and epigenetic silencing of vitamin D signaling in melanoma cells. J. Steroid Biochem. Mol. Biol. 121(1–2), 110–113 (2010).
    • 120. Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos. 37(10), 2112–2117 (2009).
    • 121. Essa S, Reichrath S, Mahlknecht U et al. Signature of VDR miRNAs and epigenetic modulation of vitamin D signaling in melanoma cell lines. Anticancer Res. 32(1), 383–389 (2012).
    • 122. Wang W, Xie Y, Chen F et al. LncRNA MEG3 acts a biomarker and regulates cell functions by targeting ADAR1 in colorectal cancer. World J. Gastroenterol. 25(29), 3972–3984 (2019).
    • 123. Zhu Y, Chen P, Gao Y et al. MEG3 activated by vitamin D inhibits colorectal cancer cells proliferation and migration via regulating clusterin. EBioMedicine 30, 148–157 (2018).
    • 124. Zuo S, Wu L, Wang Y, Yuan X. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front. Oncol. 10, 274 (2020).
    • 125. Wu X, Li J, Ren Y, Zuo Z, Ni S, Cai J. MEG3 can affect the proliferation and migration of colorectal cancer cells through regulating miR-376/PRKD1 axis. Am. J. Transl. Res. 11(9), 5740–5751 (2019).
    • 126. Chen S, Bu D, Ma Y et al. H19 overexpression induces resistance to 1,25(OH)2D3 by rargeting VDR through miR-675-5p in colon cancer cells. Neoplasia 19(3), 226–236 (2017).
    • 127. Anderson MG, Nakane M, Ruan X, Kroeger PE, Wu-Wong JR. Expression of VDR and CYP24A1 mRNA in human tumors. Cancer Chemother. Pharmacol. 57(2), 234–240 (2006).
    • 128. Bareis P, Bises G, Bischof MG, Cross HS, Peterlik M. 25-hydroxy-vitamin d metabolism in human colon cancer cells during tumor progression. Biochem. Biophys. Res. Commun. 285(4), 1012–1017 (2001).
    • 129. Luo W, Karpf AR, Deeb KK et al. Epigenetic regulation of vitamin D 24-hydroxylase/CYP24A1 in human prostate cancer. Cancer Res. 70(14), 5953–5962 (2010).
    • 130. Chung I, Karpf AR, Muindi JR et al. Epigenetic silencing of CYP24 in tumor-derived endothelial cells contributes to selective growth inhibition by calcitriol. J. Biol. Chem. 282(12), 8704–8714 (2007).
    • 131. Kósa JP, Horváth P, Wölfling J et al. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells. World J. Gastroenterol. 19(17), 2621–2628 (2013).
    • 132. Sun H, Jiang C, Cong L et al. CYP24A1 inhibition facilitates the antiproliferative effect of 1,25(OH)(2)D(3) through downregulation of the WNT/β-catenin pathway and methylation-mediated regulation of CYP24A1 in Colorectal cancer cells. DNA Cell Biol. 37(9), 742–749 (2018).
    • 133. Mahmood N, Arakelian A, Muller WJ, Szyf M, Rabbani SA. An enhanced chemopreventive effect of methyl donor S-adenosylmethionine in combination with 25-hydroxyvitamin D in blocking mammary tumor growth and metastasis. Bone Res. 8, 28 (2020). • Provides a novel strategy to reduce breast cancer-associated morbidity and mortality using vitamin D.
    • 134. Hu PS, Li T, Lin JF et al. VDR-SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct. Target. Ther. 5(1), 183 (2020).
    • 135. Hu P, Li S, Tian N et al. Acidosis enhances the self-renewal and mitochondrial respiration of stem cell-like glioma cells through CYP24A1-mediated reduction of vitamin D. Cell Death Dis. 10(1), 25 (2019).
    • 136. Detich N, Hamm S, Just G, Knox JD, Szyf M. The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-Adenosylmethionine. J. Biol. Chem. 278(23), 20812–20820 (2003).
    • 137. Mukhopadhyay S. Familial manganese-induced neurotoxicity due to mutations in SLC30A10 or SLC39A14. Neurotoxicology 64, 278–283 (2018).
    • 138. Tuschl K, Mills PB, Parsons H et al. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia – a new metabolic disorder. J. Inherit. Metab. Dis. 31(2), 151–163 (2008).
    • 139. Claro Da Silva T, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J. Steroid Biochem. Mol. Biol. 163, 77–87 (2016).
    • 140. Hutchens S, Liu C, Jursa T et al. Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice. J. Biol. Chem. 292(23), 9760–9773 (2017).
    • 141. Li S, De La Cruz J, Christakos S et al. Nutrigenomics of 1, 25 (OH) 2D3 action in the intestine: evidence for a role of 1, 25 (OH) 2D3 in manganese transport. J. Bone Miner. Res. 34, 212 (2019).
    • 142. Li S, De La Cruz J, Hutchens S et al. Analysis of 1,25-dihydroxyvitamin D(3) genomic action reveals calcium-regulating and calcium-independent effects in mouse intestine and human enteroids. Mol. Cell. Biol. 41(1), e00372–20 (2020).
    • 143. Christakos S, Li S, De La Cruz J et al. Vitamin D and the intestine: review and update. J. Steroid Biochem. Mol. Biol. 196, 105501 (2020).
    • 144. Ahmad TR, Higuchi S, Bertaggia E et al. Bile acid composition regulates the manganese transporter Slc30a10 in intestine. J. Biol. Chem. 295(35), 12545–12558 (2020).
    • 145. Kawamata Y, Fujii R, Hosoya M et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278(11), 9435–9440 (2003).
    • 146. Maruyama T, Miyamoto Y, Nakamura T et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298(5), 714–719 (2002).
    • 147. Kerachian MA, Javadmanesh A, Azghandi M et al. Crosstalk between DNA methylation and gene expression in colorectal cancer, a potential plasma biomarker for tracing this tumor. Sci. Rep. 10(1), 2813 (2020).
    • 148. Yagi K, Akagi K, Hayashi H et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin. Cancer Res. 16(1), 21–33 (2010).
    • 149. Shangkuan WC, Lin HC, Chang YT et al. Risk analysis of colorectal cancer incidence by gene expression analysis. PeerJ 5, e3003 (2017).
    • 150. Shukeir N, Stefanska B, Parashar S et al. Pharmacological methyl group donors block skeletal metastasis in vitro and in vivo. Br. J. Pharmacol. 172(11), 2769–2781 (2015).
    • 151. Parashar S, Cheishvili D, Arakelian A et al. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications. Cancer Med. 4(5), 732–744 (2015).
    • 152. Mehdi A, Attias M, Mahmood N et al. Enhanced anticancer effect of a combination of S-adenosylmethionine (SAM) and immune checkpoint inhibitor (ICPi) in a syngeneic mouse model of advanced melanoma. Front. Oncol. 10, 1361 (2020).
    • 153. Mahmood N, Cheishvili D, Arakelian A et al. Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications. Oncotarget 9(4), 5169–5183 (2018).
    • 154. Mahmood N, Arakelian A, Cheishvili D, Szyf M, Rabbani SA. S-adenosylmethionine in combination with decitabine shows enhanced anti-cancer effects in repressing breast cancer growth and metastasis. J. Cell. Mol. Med. 24(18), 10322–10337 (2020).
    • 155. Larriba MJ, Muñoz A. SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications. Br. J. Cancer 92(6), 985–989 (2005).
    • 156. Bhatia V, Falzon M. Restoration of the anti-proliferative and anti-migratory effects of 1,25-dihydroxyvitamin D by silibinin in vitamin D-resistant colon cancer cells. Cancer Lett. 362(2), 199–207 (2015).